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SUMMARY

We propose a new explicit contact algorithm for finite element discretized solids and shells with
smooth and non-smooth geometries. The equations of motion are integrated in time with a predictor-
corrector-type algorithm. After each predictor step, the impenetrability constraints and the exchange of
momenta between the impacting bodies are considered and enforced independently. The geometrically
inadmissible penetrations are removed using closest point projections or similar updates. Penetration
is measured using the signed volume of intersection described by the contacting surface elements,
which is well-defined for both smooth and non-smooth geometries. For computing the instantaneous
velocity changes that occur during the impact event, we introduce the decomposition contact response
method. This enables the closed-form solution of the jump equations at impact, and applies to
non-frictional as well as frictional contact, as exemplified by the Coulomb frictional model. The
overall algorithm has excellent momentum and energy conservation characteristics, as several numerical
examples demonstrate. Copyright ! 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element computations of the dynamic impact and contact of interacting bodies are notori-
ously difficult, due to the strong non-linearity and non-smoothness of the associated equations.
The inherent difficulties in simulating contact have motivated a number of approaches for
contact enforcement. Examples are penalty methods [1, 2], which allow penetration to occur
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but penalize it by applying surface contact force models, and exact or approximate Lagrange-
multiplier methods [3–6] which exactly preserve the non-interpenetration constraint. In the case
of penalty methods, in addition to their fundamental convergence difficulties [5], their sensitivity
to the choice of the parameter is often troublesome. While the proper enforcement of the non-
interpenetration constraint requires a high penalty parameter, the system becomes increasingly
stiff as the penalty parameter is increased. This makes it very challenging for such algorithms to
simulate contact when complex geometries require strong enforcement of the contact constraints,
such as in crumpling of thin-shells or contact within fragment clusters. Lagrange multiplier
methods, on the other hand, typically exactly enforce the contact constraints and so apply in
a straight-forward manner to complex settings. However, these methods require the solution of
implicit augmented systems of equations, which can become computationally very expensive
for large problems. Their implicit character also makes the parallel implementation of such
methods very challenging. Further discussion of these and other standard contact algorithms
may be found in standard textbooks [7–9].

The explicit contact-enforcement method developed in this paper, termed decomposition
contact response (DCR), circumvents a number of the above-mentioned difficulties inherent
to conventional contact-enforcement techniques. In the DCR method the enforcement of the
impenetrability constraint and the exchange of the momenta during the impact are considered
separately. The impenetrability is enforced by means of closest point projections or similar
techniques, while the transfer of momentum is accomplished by applying self-equilibrating
impulses to the nodes participating in the impact. An important feature of the DCR is its
applicability to any properly defined constraint function, such as the gap function or the
intersection volume. For example, the constraint function defined as the intersection volume is
crucial for the contact of non-smooth bodies in three-dimensional problems. In addition, the
DCR method is fully explicit, while still exactly preserving the non-interpenetration constraint
at each time-step.

The self-equilibrating impulses applied to the system during the contact event are derived
using the non-smooth variational mechanics framework [10, 11]. The applied impulses due to an
elastic collision preserve the kinetic energy and all momenta of the system, while the impulses
due to friction lead to energy dissipation, but do not change the total linear or angular momenta
of the system. In contrast to conventional contact enforcement algorithms, the magnitude of
the impulses do not depend on the amount of the penetration, which is a manifestation of the
time-discretized system and not the true continuous problem. In particular, for frictional contact
the tangential forces should directly depend only on the normal pressures and any non-physical
assumptions about the normal pressures may easily harm the fidelity of the numerical solution.

The inputs for the DCR algorithm are the surface finite elements (faces) of the discrete
contact surface, independent of the particular features of the finite elements used for discretizing
the domain integrals and the material models. Thus, the derived algorithm can be used for
shells or solids and facilitates the implementation of modular software packages, which is
critical for concurrent multi-scale and multi-physics finite element codes, such as described in
Reference [12]. Further, to simplify the algorithmic implementation we specialized the DCR
method to the treatment of pairwise collision of the contact surface elements. The two possible
penetration scenarios for two contact surface elements embedded in three-dimensional space are
node–face and edge–edge contacts. Although in many applications the treatment of node–face
penetrations is sufficient, for situations such as those involving impact between non-smooth
bodies, the proper consideration of edge–edge contact is crucial. The contact constraints are
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only enforced at the end of each time-step. Therefore, pairwise treatment of collisions may lead
to ambiguities, since some elements or nodes may participate at several collisions. To strictly
enforce causality it is necessary to prioritize the collision events with respect to the collision
times. However, in the numerical computations the overall response of the colliding bodies is
only slightly influenced by the order of the collision events within a time-step.

The final integration method developed in this paper can be regarded as an efficient, ex-
plicit approximation to the implicit rigid-body impact method developed in Reference [11]
using the framework of variational non-smooth mechanics. Previous work within the concep-
tual framework includes [13, 14]. In these papers the contact enforcement is of implicit type
and formulated as a non-linear constrained optimization problem. For large-scale problems, the
efficiency of the explicit overall time-integration scheme is adversely affected by the implicit
contact enforcement algorithm. As well known, in applications with high-velocity gradients and
frequencies close to the natural frequency of the material, explicit-type contact enforcement
and time-integration schemes are in general more efficient.

The paper begins in Section 2 by stating the equations of motion for a finite element
discretization of a contact-impact problem, and then describes the basic DCR time-discretization
strategy in Section 3. The key element of the DCR method is the efficient calculation of the
impulses produced by contact, based on linear decompositions of the momenta. This is described
in Section 4, and illustrated with a number of simple examples in Section 5. The practical
performance of the DCR method is then demonstrated on a number of numerical examples in
Section 6. Finally, the momentum decompositions necessary for the DCR method are derived
for general geometries in Section 7.

2. DISCRETE IMPACT EQUATIONS

In the following we briefly review the derivation of the variationally consistent discrete impact
equations for finite-dimensional systems, such as those for a finite element discretization of a hy-
perelastic solid or a shell. The derivations are independent of the contact constraint definition and
essentially independent of the finite elements used. For more details on non-smooth Lagrangian
mechanics and the underlying geometrical framework we refer to References [10, 11, 15] and
Section 7.

Finite element discretization of a hyperelastic solid or shell with a single impact event leads
to an action integral of the form

S(x, ẋ, tc) =
∫ tc

0
L(x, ẋ) dt +

∫ T

tc

L(x, ẋ) dt (1)

where tc is the unknown impact time and L is the semi-discrete Lagrangian,

L(x, ẋ) = ẋTMẋ − W(x) + fext · x (2)

Here M is the mass matrix, W is the internal energy, x are the deformed nodal positions, ẋ are
the nodal velocities, and fext is the external force vector. In the case of multiple impact events
over the time interval [0, T ], the action is the total sum of the actions between the distinct
impact times. In addition, the action integral is augmented by proper boundary and initial
conditions for the nodal positions and velocities, which have been omitted here for brevity.
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In the presence of contact the geometrically admissible set of deformations x ∈ Q are con-
strained to x ∈ A ⊂ Q with

A = {x ∈ Q | g(x) ! 0} (3)

The constraint function g(x) only depends on the deformed nodal positions and will later be
used for enforcing the impenetrability condition. The boundary !A, given by g(x) = 0, consists
of those deformations for which contact has just occurred without a penetration. Different
choices for the constraint function g are possible, such as the gap function or the intersection
volume. A detailed discussion of constraint functions is given in Section 3. Note that the
(non-unit) normal to !A is given by ∇g(x).

At the equilibrium configurations the action integral is required to be stationary, which is

!S(x, ẋ, tc) = !S

!x
· !x + !S

!ẋ
· !ẋ + !S

!tc
!tc = 0 (4)

Applying standard variational calculus leads to

!S(x, ẋ, tc) = !
(∫ tc

0
L(x, ẋ) dt +

∫ T

tc

L(x, ẋ) dt

)

=
∫ T

0

(
!L

!x
− d

dt

!L

!ẋ

)
· !x dt −

[
!L

!ẋ
· !x + L!tc

]t+c

t−c
= 0 (5)

The first integral in the preceding equation gives the equations of motion to be

Mẍ(t) + !W(x(t))

!x
= fext(t) (6)

The geometrical impenetrability condition

!g[x(tc)] = ∇g · (!x(tc) + ẋ(tc)!tc) = 0 (7)

is satisfied for two independent combinations of virtual deformations and impact-time variations,
namely

!x = −ẋ(tc)!tc (8a)

!x · ∇g = 0 for !tc = 0 (8b)

Note that any linear combination of these two constraints also satisfies Equation (7), and indeed
that these two possibilities span the set of allowable impact variations. The first equation (8a)
inserted in the last term of Equation (5) leads to

[
!L

!ẋ
· ẋ − L

]t+c

t−c
= 0 (9)
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Similarly, the second equation (8b) introduced in the last term of Equation (5) leads to

[
!L

!ẋ
· !x

]t+c

t−c
= 0 for all !x such that !x · ∇g = 0

which implies

[
!L

!ẋ

]t+c

t−c
= "∇g (10)

where " ∈ R is a scalar parameter. For the Lagrangian defined in Equation (2) the impact
Equations (10) and (9) reduce to

[p]t
+
c

t−c
= "∇g (11a)

[pTM−1p]t
+
c

t−c
= 0 (11b)

where p = Mẋ is the momentum vector. From the first equation (11a) follows that only the
momentum components in the direction of the normal ∇g change during the impact. The energy
conservation for the elastic impact process is described by the second equation (11b). If the
momentum p(t−c ) immediately prior to the impact event is known, Equations (11a) and (11b)
may be used to compute the momentum p(t+c ) just after the impact. The resulting momentum
conserves the kinetic energy as well as the total linear and angular momenta.

3. TIME DISCRETIZATION

The semi-discrete action integral (1) is discretized by subdividing the time [0, T ] into
subintervals 0 = t0 < t1 < · · · < tn = T and using proper shape functions in time for the de-
formations and velocities. Following this approach a class of variationally consistent time-
integration schemes can be derived [10], including well-known schemes such as the Newmark
method [16, 17], which are traditionally derived starting from the semi-discrete equations of
motion (6). In our numerical computations we use a scheme equivalent to the explicit Newmark
scheme in the predictor-corrector form (# = 0, $ = 1/2).

The motion of the nodal positions resulting from the time-integration of the equations of
motion may lead to impacts between discretized surface elements. The discrete impact events
lead to jumps in the momenta and velocities of the participating nodes, which are described
by the impact equations. In order to solve the impact equations it is necessary to provide
the nodal positions and velocities immediately prior to the impact time t−c . Since the impacts
mostly happen within a time-step ti−1 < tc < ti , a correct treatment of the impact event requires
the time-integration of the equations of motion during the intervals [ti−1 < t−c ] and [t+c < ti] and
the solution of the impact equations at the time tc. Although conceptually straightforward, the
described approach is not feasible for finite element discretized systems due to the enormous
number of possible impact events during a time-step.
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Figure 1. Resolving the impact-time exactly (left) and the approximation used in this paper (right).

To illustrate this, consider a three-dimensional finite element computation with a characteristic
element size h. The time-step is thus also of order O(h), while the number of elements N is
proportional to 1/h3, so that the total computational cost C will scale like

C ∝ N

!t
∝ 1/h4 (12)

Contact can only occur between the elements on the surface of the solid bodies, so that the
number of surface elements involved in impacts is proportional to 1/h2. To actually resolve each
impact requires time-stepping the entire system exactly to the time of each of the collisions.
This implies that the time-step must scale at best like O(h2),§ and so the total work will scale
like

C ∝ N

!t
∝ 1/h5 (13)

Clearly this is not feasible, leading to the conclusion that contact simulation algorithms cannot
attempt to exactly compute the sequence and timing of all impacts.

In the DCR approach, we do not intend to exactly track the motion of each node through
collision and to independently consider each impact. Instead, the equations of motion are initially
advanced in time for a time-step [ti−1, ti] without considering the contact constraints (Figure 1).
Subsequently, all the impact events at the time ti are identified with an algorithm for finding
triangle–triangle intersections. For solving the impact equations we make the assumption that
the impact event happened at the time ti . Under these assumptions the impact equations (11)
lead to the following quadratic equation system for computing the post-impact velocities:

("∇g + pt−i
)TM−1("∇g + pt−i

) − pT
t−i

M−1pt−i
= 0 (14)

The quadratic equation may be solved with iterative methods, such as those of Newton–Raphson
type [18]. However, it is also possible to derive closed-form expressions for the post-impact
velocities using momentum decompositions as derived in Section 4.

§This estimate assumes that no higher frequencies are activated by the refinement. In practice, however, they
will be, and so the actual time-step must go to zero faster than O(h2), making the cost even higher than
that given by (13).
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Figure 2. Possible contact surface triangle penetrations and constraint function
definitions in three dimensions.

The definition of the constraint function g substantially influences the form and size of the
quadratic system of Equation (14). Although it is possible to define the constraints in terms
of global geometric quantities, such as intersection volumes, it is advantageous to define the
constraints using local quantities only. For three-dimensional problems, essentially two different
type impacts are possible: either a node impacts with a finite element face, or the edge of a
finite element face impacts with the edge of another face. The two possible types of impacts in
three dimensions for triangular finite elements are illustrated in Figure 2. In both cases we can
define the constraint function by the signed volume of the tetrahedron formed by one triangle
and a vertex, or by two edges, respectively.

The impact equations only describe the changes in the momenta and velocities during the
impact event. The enforcement of the constraints on the displacements has to be accomplished
independently, e.g. by means of closest point projections. In our implementation in the node–
triangle penetration case the penetrating vertex is simply projected back to the closest point on
the triangle surface. Similarly, in the edge–edge impact case the penetrating edge is projected
to the closest point on the triangle edge. The projecting-back operation of the edges and
nodes obviously leads to an increase in the internal energy, which can be taken into account
by including the performed work into the energy balance. In the finite element context, the
performed work can be readily estimated by multiplying the nodal force vector with the
displacement difference to obtain

("∇g + pt−i
)TM−1("∇g + pt−i

) − pT
t−i

M−1pt−i
≈ (f int − fext) · (xti − x̃ti ) (15)

where x̃ti are the projected vertex positions and f int is the internal force vector. A similar
correction can be made to correct the small errors in angular momentum introduced by the
projecting-back operation, if desired. In summary, the outline of the overall algorithm for each
time-step is given in Figure 3.
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Explicit Contact Time-stepping Algorithm

1. Update nodal positions and velocities of the finite element mesh using a standard
explicit time-integration scheme, such as the Newmark method, ignoring contact
constraints.

2. Search for inadmissible triangle-triangle intersections.

(a) Remove face-node penetrations by projecting the penetrating node to the
closest point on the triangle surface.

(b) Remove edge-edge penetrations by projecting the penetrating edge to the
closest point on the triangle edge.

3. Update the velocities of the finite element nodes participating in collisions
according to the impact equations 11, using momentum decompositions.

Figure 3. Algorithm for combining time-stepping with explicit contact dynamics. Note that the contact
resolution only occurs once per time-step, even though there may be many collisions which occurred
within that time. This means that the cost of the time-step scales with element size h as usual for

explicit elastodynamics methods, and does not increase faster.

4. MOMENTUM AND VELOCITY DECOMPOSITIONS

A particularly simple method for solving the impact equations (11) can be derived using
orthogonal momentum or velocity decompositions. In this section we give a brief outline of
the method, which should be sufficient for implementation. In Section 7, we will derive the
decompositions in detail and prove the various properties that we use here.

4.1. Non-frictional contact

To begin, the momentum vector of all vertices involved in the impact is decomposed into a
normal and a tangential component to give

p = pnorm + ptang (16)

The normal component pnorm is defined as the orthogonal projection of the momentum vector
onto the span of the gradient of the constraint function, which is

〈∇g, p − pnorm〉M−1 = 0 (17)

where 〈p, r〉M−1 = pTM−1r is the inner product. Here M is the mass matrix, and M−1 is its
inverse.¶ The normal component follows from (17) as

pnorm =
( 〈∇g, p〉M−1

〈∇g, ∇g〉M−1

)
∇g

= (∇g)TM−1p[(∇g)TM−1(∇g)]−1∇g (18)

¶The inner products defined by M and M−1 are natural for velocities and momenta, respectively. In particular,
if p1 = Mẋ1 and p2 = Mẋ2, then 〈ẋ1, ẋ2〉M = 〈p1, p2〉M−1 .
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At impact, we write p+ = pt+c for the momentum vector immediately after impact, and p− = pt−c
for momentum vector immediately before impact. These values can be decomposed as above
to give

p+ = p+
tang + p+

norm (19a)

p− = p−
tang + p−

norm (19b)

From (11a) we see that the momentum during the impact jumps by an amount in the direction
∇g. This implies that the tangential components of p remain the same during impact. Indeed,
only the normal component will change. Furthermore, if we take

p+
tang = p−

tang (20a)

p+
norm = −p−

norm (20b)

then we can readily check that energy conservation (11b) is satisfied by computing

(p+
norm + p+

tang)
TM−1(p+

norm + p+
tang) = (p−)TM−1(p−) (21)

where the critical fact is that p−
tang and p−

norm are orthogonal in the M−1 inner product, so
that (p−

norm)TM−1(p−
tang) = 0.‖ Given decomposition (19) of the momentum just before impact

into normal and tangential components, we thus see that the momentum just after impact is
given by

p+ = p−
tang − p−

norm (22)

4.2. Inelastic contact

The above impact response based on reversing the normal component of momentum produces
entirely elastic impacts. Often it is desirable, however, to include a model of inelastic processes
which occur at the instant of impact [19]. The simplest of such models is to take a coefficient of
restitution e ∈ [0, 1], which ranges between e = 1 for completely elastic to e = 0 for completely
inelastic contact. The normal component of momentum after impact is now given by

p+
norm = −ep−

norm (23)

An alternative way to express this is to rewrite the impact response (22) as

p+ = p− + Inorm (24)

where the normal impulse is

Inorm = −(1 + e)p−
norm (25)

‖In fact, (20) is the only solution of (11). This can be seen by using (11a) to show that p+
norm must be of the

form p+
norm =%p−

norm, assuming non-zero normal component, and then using (11b) to see that %= 1 and −1
are the only solutions. The %= 1 case corresponds to no impact, and so is ruled out on non-interpenetration
grounds, leaving %= − 1 and giving (20b).
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4.3. Sliding directions for friction

We have assumed above that the tangential component of the motion is unchanged by the
collision, corresponding to a frictionless impact. To include a model of frictional processes, it
is necessary to consider the relative motion between the contacting bodies. As a first step, the
momentum is decomposed into non-fixed and fixed components

p = pnonfix + pfix (26)

As the name suggests, the fixed component does not lead to any relative motion between the
contacting bodies. For example, the fixed component includes the rigid body translations and
rotations of the total system, in addition to other components. In contrast, the non-fixed com-
ponent may lead to relative motion normal or tangential to the contact surface. For computing
the non-fixed components a separation vector h is defined by

h = xL − xR (27)

where xL and xR are the positions of the two impacting points, with h = 0 at the impact
time tc.

According to our definition, the fixed component of momentum is such that the fixed velocity
M−1pfix instantaneously keeps h equal to 0 (that is, the bodies do not separate, interpenetrate,
or slide along each other), so that

h(tc + &) = ∇hM−1 · pfix& + O(&2) = 0 (28)

which implies

∇hM−1 · pfix = 0 (29)

and for the non-fixed components

∇hM−1 · (p − pnonfix) = 0 (30)

Similar to the normal decomposition, the non-fixed component may be interpreted as an or-
thogonal projection onto the span of the columns of (∇h)T with respect to the inner product
M−1 (see Section 7.2 for details). This implies

pnonfix = (∇h)T(〈(∇h)T, (∇h)T〉M−1)−1〈(∇h)T, p〉M−1

= (∇h)T[(∇h)M−1(∇h)T]−1(∇h)M−1p (31)

Non-fixed motions can now be decomposed further into those normal to the impact, leading
to separation or interpenetration, and those resulting from sliding between the bodies. We thus
have

p =
pnonfix︷ ︸︸ ︷

pnorm + pslide + pfix︸ ︷︷ ︸
ptang

(32)
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so that the sliding and fixed components are given by

pslide = pnonfix − pnorm (33)

pfix = p − pnonfix (34)

4.4. Frictional impact response

The impact equations (11) assume that the impact occurs without friction. Friction is included
by modifying the length of the sliding component of momentum pslide, as frictional forces are
only activated in the direction of potential slippage. As a consequence, frictional forces do not
change the total angular and linear momentum of the system (see also Section 7.7).∗∗

We consider here a simple Coulomb model which captures slip–stick behaviour and linear
dependence of the frictional force on the normal force.†† Friction at the instant of impact is
modelled as an impulse, so that the momentum jump equation (11a) becomes

p+ = p− + Inorm + Islide (35)

where Islide is the impulse in the sliding direction due to friction. For the purposes of computing
frictional impulses, we ignore the inelastic model of Section 4.2 and take

Inorm = −2p−
norm (36)

The corresponding impulse delivered at the point of contact (in R3) can be computed from the
nodal values by

Inorm,point = (∇h)−TInorm (37)

with the pseudo-inverse (∇h)−1 = (∇h)T(∇h(∇h)T)−1.‡‡

For the subsequent computations we make the assumption that the impulse is delivered over
one time-step !t , so that the normal force component fnorm ∈ R at the point of contact is

fnorm = ‖Inorm,point‖
!t

(38)

where ‖·‖ is the Euclidean norm in R3. In the above and following equations the time-step is
used only to clarify the derivation, and does not influence the final result.

The maximum frictional impulse which can be exerted occurs in the case of perfect stick,
when the sliding momentum after impact must be p+

slide = 0, and so the impulse applied to the
system would have to be

Imax
slide = − p−

slide (39)

∗∗Of course, the angular and linear momenta of the individual bodies involved in the impact will change, but
the momenta of the entire system do not.

††More complex models of friction can be easily incorporated into the DCR framework by redefining (45).
‡‡This is well-defined because Inorm is in the direction ∇g, which is in the span of the columns of (∇h)T.
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Under stick conditions, the impulse Imax
slide,point and traction f max

slide ∈ R due to friction are thus

Imax
slide,point = (∇h)−T · Imax

slide (40)

f max
slide =

‖Imax
slide,point‖

!t
(41)

where we use the fact that Islide will be in the span of the columns of (∇h)T.
For Coulomb’s law of friction, the actual traction fslide depends on the coefficient of

friction ', and is given by

fslide = min{f max
slide, 'fnorm} (42)

Consequently, the actual frictional impulse Islide,point at the point of contact and the actual
frictional impulse Islide of the nodes participating at contact must be

Islide,point = fslide

f max
slide

Imax
slide,point = fslide!t

Imax
slide,point

‖Imax
slide,point‖

(43)

Islide = (∇h)T · Islide,point (44)

The preceding sequence of calculations can be collapsed to give

Islide =






−p−
slide, ‖p−

slide‖M−1!'‖p−
norm‖M−1

−'
‖p−

norm‖M−1

‖p−
slide‖M−1

p−
slide otherwise

(45)

where ‖p‖M−1 is the norm induced by the inner product 〈p, p〉M−1 . The first case corresponds
to perfect stick and the second case to slip. In accordance with the continuous problem, the
computed impulse only depends on the momenta prior to contact and does not directly depend
on algorithmic variables, such as the time-step or the amount of interpenetration between the
bodies before contact resolution.

The entire sequence of calculations to decompose the momentum and compute the impact
response is summarized in Figure 4.

4.5. Velocity decompositions

Using the fact that velocity and momentum are related by p = Mẋ, all of the momentum
decompositions can be written as velocity decompositions. We thus have

ẋ =
ẋnonfix︷ ︸︸ ︷

ẋnorm + ẋslide + ẋfix︸ ︷︷ ︸
ẋtang

(46)
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Figure 4. DCR algorithm for computing the change in momentum due to a impact.

Given a velocity ẋ, its normal component is

ẋnorm =
( 〈∇g, ẋ〉

〈∇g, ∇g〉M−1

)
M−1∇g

= (∇g)Tẋ[(∇g)TM−1(∇g)]−1M−1(∇g) (47)

and its non-fixed component is

ẋnonfix = M−1(∇h)T(〈(∇h)T, (∇h)T〉M−1)−1〈(∇h)T, ẋ〉

= M−1(∇h)T[(∇h)M−1(∇h)T]−1(∇h)ẋ (48)

so that the sliding and fixed components are

ẋslide = ẋnonfix − ẋnorm (49)

ẋfix = ẋ − ẋnonfix (50)

Note that each component satisfies pfix = Mẋfix, etc.

5. ILLUSTRATIVE EXAMPLES

5.1. Two particles in 1D

Consider two point masses in 1D with masses mA and mB , positions xA and xB , and momenta
pA = mAẋA and pB = mBẋB . Assume that initially xA < xB , so that the admissible set is defined
by g(xA, xB) = xA − xB!0. Taking x = [xA xB ]T and p = [pA pB ]T and

M =
[

mA 0

0 mB

]

(51)
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we have

∇g(x) =
[

1

−1

]

(52)

The separation vector is given by h(x) = xA − xB and so ∇h = ∇g. We can now calculate

pnorm =





mBpA − mApB

mA + mB

mApB − mBpA

mA + mB



 , pslide =
[

0

0

]

, pfix =





mApA + mApB

mA + mB

mBpA + mBpB

mA + mB



 (53)

It is simple to check that pnorm, pslide and pfix are indeed orthogonal to each other with respect
to the inner product 〈· , ·〉M−1 . In particular, (pnorm)TM−1(pfix) = 0, since pslide vanishes in
the one-dimensional setting. The momentum after a frictionless impact (22) is thus given by
p+ = − p−

norm + p−
slide + p−

fix which is

p+ = 1
mA + mB

[
mA − mB 2mA

2mB mB − mA

] [
pA

pB

]

(54)

and agrees with the familiar formula for an elastic two-particle collision, derived directly from
conservation of total linear momentum and total kinetic energy in 1D.

5.2. Node–face impact in 2D

We consider now two linear triangular elements impacting in 2D. As it is the boundaries of
the two triangles which actually impact, we need to consider the impact between a point mass
and a rigid extensible bar in 2D, as illustrated in Figure 5.

The rod has endpoints xA and xB , and the point mass has position xC . We assume that
the mass of the triangles is lumped at the nodes, resulting in masses mA, mB , and mC , with
corresponding momenta pA, pB , and pC . We define the constraint function to be

g(xA, xB, xC) = (xC − xB)T(xB − xA)⊥ (55)

Figure 5. Impact of two triangles in 2D.
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where

x⊥ =
[

x1

x2

]⊥

=
[ −x2

x1

]

(56)

Note that this is equivalent to taking g to be the third component of the cross product of
(xC − xB) and (xB − xA) embedded into R3. The function g is thus equal to twice the signed
area of the triangle formed by the points xA, xB and xC . Differentiating g with respect to its
three arguments gives

∇xAg = (xB − xC)⊥, ∇xB g = (xC − xA)⊥, ∇xCg = (xA − xB)⊥ (57)

which allows us to compute the normal component of p using (18).
To form the separation function h we compute the parameter ( ∈ R such that the impact

occurs at (1 − ()xA + (xB . As this must equal xC we have

((x) = (xC − xA)T(xB − xA)

(xB − xA)T(xB − xA)
(58)

The separation vector h ∈ R2 is thus

h(x) = (1 − ()xA + (xB − xC (59)

and we can calculate the derivative to obtain

∇h =
[

1 − ( 0 ( 0 −1 0

0 1 − ( 0 ( 0 −1

]

(60)

so the transpose of the pseudo-inverse is

(∇h)−T = 1

(1 − ()2 + (2 + 1

[
1 − ( 0 ( 0 −1 0

0 1 − ( 0 ( 0 −1

]

(61)

To compute the non-fixed component of momentum we use (31), noting that

(∇h)M−1(∇h)T =
(

(1 − ()2

m1
+ (2

m2
+ 1

m3

) [
1 0

0 1

]

(62)

The normal component of momentum will be in the direction of ∇g, and the sliding component
will be in the remaining part of the span of the rows of ∇h.

5.3. Momentum decompositions for finite elements

We work here in R3, and consider 2D finite elements which represent either a shell or the
boundary of a solid body. Greek indices %, # denote coordinate directions and take values
1, 2, or 3.

Let Nk((, )) be the shape function associated with node k, for k = 1, . . . , n, where ( and
) are the parameter coordinates of a material point in the element. The nodal positions are
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given by xk ∈ R3 with coordinates xk%, so that the total position vector is x = [x1 x2 · · · xn]T.
Similarly, ẋk ∈ R3 and pk ∈ R3 are the velocity and momentum vectors of node k.

The 3n × 3n mass matrix M has components Mk%,!#, with a block structure so that Mk%,!# =
mk,!!%# for some n × n matrix m, where ! is the Kronecker delta. We thus have that
pk% = ∑n

!=1
∑3

#=1 Mk%,!#v
!# = ∑n

!=1 mk,!v
!%.

Normal component. We assume that we have some function g(x) so that the admissible set A
is those configurations x with g(x)!0, as in (3). Using (18) to compute the normal component
of velocity now gives

[pnorm]k% =
( ∑n

!=1
∑3

#=1
∑n

i=1 (!g(x)/!x!#)[m−1]!, ipi#
∑n

!=1
∑n

i=1
∑3

#=1(!g(x)/!x!#)[m−1]!, i (!g(x)/!xi#)

)
!g(x)

!xk% (63)

Sliding component. To calculate pslide we must first calculate pnonfix using (31). We begin by
constructing the separation vector h which tracks the material points of impact. Let xL and xR

be the positions in R3 of the two material particles which impacted, so that

xL% =
n∑

k=1
Nk((L, )L)xk% (64a)

xR% =
n∑

k=1
Nk((R, )R)xk% (64b)

for material coordinate ((L, )L) and ((R, )R). Now the separation vector is given by h = xL−xR ,
as in (27), so ∇h is

[∇h]%!# = !h%

!x!#
= (N!((L, )L) − N!((R, )R))!%

# (65)

Using this we can explicitly compute the expression for (31) to give

[pnonfix]k% = [!N ]k
( ∑n

i=1
∑n

j=1 [!N ]i[m−1]i, jpj%∑n
i=1

∑n
j=1 [!N ]i[m−1]i, j [!N ]j

)

(66)

where [!N ]i = Ni((L, )L) − Ni((R, )R). Note that it is not necessary to calculate the inverse
of a matrix in this expression, as the denominator is simply a scalar. This is due to the block
structure of M and ∇h.

Finally we can obtain pslide from

[pslide]k% = [pnonfix]k% − [pnorm]k% (67)

Component properties. In Section 7, we will see that rigid body motions are a subset of the
fixed motions, and thus the total linear and angular momentum of the normal and sliding
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components is zero, assuming a free system so that g and h are translation and rotation
invariant.§§ That is,

0 =
n∑

k=1
pnorm, k =

n∑
k=1

pslide, k (68a)

0 =
n∑

k=1
(xk − xcm) × pnorm, k =

n∑
k=1

(xk − xcm) × pslide, k (68b)

where the centre of mass xcm is

xcm =
∑n

k=1
∑n

!=1 mk,!xk

∑n
k=1

∑n
!=1 mk,!

(69)

Properties (68) can also be checked by direct calculation.

Lumped mass matrices. For performing the momentum decomposition it is advantageous to use
a lumped mass matrix, so that m is diagonal, making the calculation of m−1 much cheaper.
If we assume that m is diagonal with entries given by mk , then (63) and (66) simplify to

[pnorm]k% =
( ∑n

!=1
∑3

#=1 (!g(x)/!x!#)(m!)
−1p!#

∑n
!=1

∑3
#=1 (!g(x)/!x!#)(m!)−1(!g(x)/!x!#)

)
!g(x)

!xk% (70a)

[pnonfix]k% = [!N ]k
( ∑n

!=1 [!N ]!(m!)
−1p!%∑n

!=1 [!N ]!(m!)−1[!N ]!

)
(70b)

Even in cases where lumped mass matrices are not being used for the finite element discretiza-
tion, it may be reasonable to use mass lumping for the contact response step of the DCR
algorithm.

6. NUMERICAL EXAMPLES

In this section, we investigate the performance of the proposed DCR algorithm for selected
contact problems in one and three-dimensions. All three-dimensional examples are discretized
with subdivision shell elements [20–22]. The time-integration is performed with the explicit
Newmark scheme without physical or algorithmic damping (# = 0.0, $ = 0.5).

6.1. Two-bar impact

We consider first the longitudinal impact of two identical bars (Figure 6). The length of each
bar is L = 10, Young’s modulus is E = 1, mass density is * = 1, and the cross-section is

§§This will not be true if there are elements of the system, such as a fixed wall, which do not move if
the position vector x is translated or rotated, and in such cases we do not expect momentum preservation
during impact.
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Figure 6. Impact of two bars.
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Figure 7. Two-bar impact. Tip displacements versus time.

A = 1.0. Prior to impact at t = 0, the velocities of the left and right bar are v = 0.1 and −0.1,
respectively. In the numerical computations both bars are discretized with 100 two-node linear
elastic finite elements. The stable time step size, or the Courant number, is !tc = 0.1. Two
different computations with time step sizes !t = 0.05 and 0.01 are performed. The displacements
of the contacting bar tips is shown in Figure 7 and is essentially independent of the time size.
In agreement with the analytical solution, the bar tips remain in contact for t < 20. In contrast
to the displacements, the velocities exhibit spurious oscillations as shown in Figures 8 and 9.
The oscillations can essentially be attributed to the explicit character of the DCR algorithm
and the absence of numerical damping. Nevertheless, the oscillations get smaller as the time
step size is decreased, particularly during the persistent contact phase (t < 20).

6.2. Sphere–sphere impact

As a more complex example, we consider the impact of two shell spheres discretized with
4096 subdivision shell elements, as shown in Figure 10. Both spheres have radius R = 1.0 and
thickness h = 0.05. Young’s modulus is E = 2.1 × 105, Poisson’s ratio is + = 0.3, and the mass
density is * = 7.85 × 10−2. Prior to the impact the sphere on the left has an initial velocity of
vx = 150.0, vy = 0.0, and vz = 0.0 and the sphere on the right has a velocity of vx = −50.0,
vy = 0.0, and vz = 0.0. The time-step for the explicit Newmark scheme has been chosen as
!t = 5 × 10−6.

As it is visible in the snapshots of Figure 10, the impact process leads to significant
deformations of both spheres due to the relatively small radius-to-thickness ratio. Furthermore,
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Figure 8. Two-bar impact. Tip velocities versus time for !t = 0.05.
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Figure 9. Two-bar impact. Tip velocities versus time for !t = 0.01.

during the impact process a significant part of the kinetic energy is converted into internal
energy (Figure 11). The slight total energy increase by 2.58% during the impact is caused by
the energy contributed to system during the removal of the penetrations. We did not apply the
modification proposed in Equation (15), since the energy increase appears to be insignificant.
The total angular and linear momentum of the system are practically constant throughout the
simulation, as is evident from Figure 12.

In the frictional case, the total energy of the system decays in time as a result of energy
dissipation caused by the slip-type frictional response (see Figure 13). In Figure 14, it can be
seen that for small amounts of friction (' = 0.25 and 0.5) slip-type friction dominates and as a
result the energy decrease is greater for higher friction. For larger amounts of friction (' = 0.75
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Figure 10. Impact of two spheres at t = 0, 0.02 and 0.03.
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Figure 11. Sphere–sphere impact with ' = 0.0. Energies versus time.

and 1.0), in contrast, stick-type friction becomes increasingly important, so that the energy loss
lessens as the friction coefficient rises. The DCR algorithm essentially conserves the momenta
independent of the friction parameters, so that the time history of the total momenta with
friction is indistinguishable from Figure 12.

6.3. Non-smooth cube impact

Our third example concerns the non-frictional impact of five cubes (Figure 15). The impacts
between the non-smooth cubes require the treatment of both vertex–triangle and edge–edge
impacts. Each cube has an edge length of 1.0 and has been discretized with 192 subdivision
shell elements. Young’s modulus is E = 2.1 × 105, Poisson’s ratio is + = 0.3, and the mass
density is * = 0.7085. Prior to the impact, the single cube has an uniform initial velocity
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Figure 12. Sphere–sphere impact with ' = 0.0. Norm of momenta versus time.
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Figure 13. Sphere–sphere impact with ' = 0.5. Energies versus time.

of vx = 30.0, vy = −30.0, and vz = −30.0, and the group of four cubes have vx = −30.0,
vy = 30.0, and vz = 30.0. The time-step for the explicit Newmark scheme has been chosen
as !t = 5 × 10−6. Again, the very good energy and momentum conservation properties of the
proposed method are noteworthy (Figures 16 and 17).

Figures 18 and 19 show the collision of 76 cubes discretized with 14 592 subdivision shell
elements. The geometry of each cube, spatial discretization, and time-integration parameters are
equivalent to the five cube case. The robustness of the proposed DCR algorithm is evident in
this highly complex problem, which includes both smooth and non-smooth contact.
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Figure 15. Impact of five cubes at t = 0, 0.0075, and 0.015.
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Figure 16. Non-smooth cube impact. Energies versus time.
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Figure 17. Non-smooth cube impact. Norm of momenta versus time.

Figure 18. Impact of 76 cubes at t = 0.028.

6.4. Sphere–plate impact

Our last example, the impact of a spherical shell with a plate illustrates the performance of
the DCR for situations with mainly persistent contact. The sphere and plate have a thick-
ness h = 0.0035, and the radii are R = 0.35 and 0.125, respectively. The Young’s modulus is
E = 2.1 × 105, the Poisson’s ratio is + = 0.3, and the mass density is * = 7.85 × 10−2. The
sphere has an uniform initial velocity of vz = −75.0 and the plate has vz = 25.0. The time-step
for the explicit Newmark scheme has been chosen as !t = 1 × 10−7.

The finite element mesh with 6528 subdivision shell elements and two snapshots of the limit
surface at t = 0.0015 and 0.0030 are shown in Figure 20. The localized strong oscillations in
the internal and kinetic energy histories in Figure 21 result from the wave reflection at the
free-plate boundary. Furthermore, the weak linear momentum oscillations in Figure 22 result
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Figure 19. Impact of 76 cubes at t = 0.21.

Figure 20. Impact of a sphere and a plate at t = 0, 0.0015 and 0.0030.
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Figure 21. Sphere–plate impact. Energies versus time.
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from the non-conservative dynamic boundary condition enforcement for the subdivision shell
elements. Despite the oscillations the good energy and momentum conservation properties of
the method are apparent.

7. INTRINSIC MOMENTUM DECOMPOSITIONS

In this section, we revisit the momentum and velocity decompositions of Section 4 from an
intrinsic point of view. This allows us to be more precise about the definitions and properties
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of the decompositions, as well as readily enabling the definition of a fourth component, namely
rigid motions, which makes clear the momentum preserving properties of the DCR method.

7.1. System geometry

The notation used in this section is substantially different from that in Sections 1–6. Here we
use standard differential-geometric notation, such as that in Reference [23].

Consider a configuration manifold Q, with the tangent space TqQ consisting of all velocity
vectors based at the configuration q ∈ Q. We take a Riemannian metric on Q, given by

〈v, w〉M = vTM(q)w (71)

for some positive definite matrix M(q)¶¶ and all v, w ∈ TqQ, with coordinate expression
[M(q)]ij .

The dual space to TqQ is the cotangent space T ∗
q Q, consisting of momentum or force

vectors based at the point q ∈ Q. The inner product M(q) on TqQ induces the Legendre
transform M(q) = FL|TqQ : TqQ → T ∗

q Q by 〈M(q)v, w〉 = 〈v, w〉M(q), with coordinate expres-
sion pi = [M(q)]ij vj . It also induces an inner product 〈· , ·〉M(q)−1 on T ∗

q Q by 〈p, r〉M(q)−1 =
〈p, M(q)−1r〉 with coordinate expression [M(q)−1]ij , where 〈 · , ·〉 denotes dual-primal pairing.

Let A ⊂ Q be the admissible set of configurations, and !A be the contact set. We assume
that A is defined by

A = {q ∈ Q | g(q)!0} (72)

for some smooth admissible set function g : Q → R for which 0 is a regular value.‖‖ Henceforth,
we will assume that q is a point in !A at which we work.

7.2. Projection operators

We briefly recall some elementary facts concerning projection operators. Consider a linear space
X with an inner product M , and let B : X → Y be a linear operator from X onto Y . Then we
have

(X, M) B !!

M
""

(Y, N)

N
""

(X∗, M−1) (Y ∗, N−1)
B∗##

(73)

where X∗ and Y ∗ are dual spaces, B∗ is the adjoint of B, and N is defined by the in-
duced inner product on Y ∗ given by 〈r, r̄〉N−1 = 〈B∗r, B∗r̄〉M−1 . As matrices, [B∗] = [B]T and

¶¶The matrix M(q) corresponds to the (possibly configuration dependent) mass matrix of earlier sections.
‖‖That is, if g(q) = 0 then dg(q) .= 0.
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N = [BM−1BT]−1. Given these constructions, we now observe that

X∗ = range(B∗) ⊕ (M · ker(B)) (74a)

range(B∗) ⊥M−1 (M · ker(B)) (74b)

To see (74b) we take B∗r ∈ range(B∗) and p ∈ M · ker(B), so that BM−1p = 0, and calculate
〈B∗r, p〉M−1 = 〈r, BM−1p〉 = 0. To see (74a) we already have that the intersection of the two
spaces is {0}, and we now write the projection operators explicitly as

P1 = B∗NBM−1 (75a)

P2 = Id − P1 (75b)

Clearly P1(p) ∈ range(B∗), so we only need to check that P2(p) ∈ M · ker(B), but this follows
immediately from

BM−1(Id − B∗NBM−1) = BM−1 − (BM−1B∗)(BM−1B∗)−1BM−1 = 0

7.3. Momentum and velocity decompositions

The tangent and cotangent spaces are decomposed into

TqQ =

T nonfix
q Q

︷ ︸︸ ︷
T norm

q Q ⊕ T slide
q Q ⊕

T fix
q Q

︷ ︸︸ ︷
T

rigid
q Q ⊕ T

shape
q Q

︸ ︷︷ ︸
T

tang
q Q

(76a)

T ∗
q Q =

T
∗, nonfix
q Q

︷ ︸︸ ︷
T ∗,norm

q Q ⊕ T ∗, slide
q Q ⊕

T
∗, fix
q Q

︷ ︸︸ ︷
T

∗, rigid
q Q ⊕ T

∗, shape
q Q

︸ ︷︷ ︸
T

∗, tang
q Q

(76b)

where all non-intersecting subspaces are orthogonal in the appropriate inner product (that is,
M(q) for TqQ and M(q)−1 for T ∗

q Q) and the corresponding components of T ∗
q Q and TqQ

are images under M(q). The orthogonal projection operators onto the subspaces of the tangent
and cotangent spaces are denoted by

PX : TqQ → T X
q Q, P∗,X : T ∗

q Q → T ∗,X
q Q (77)

where X denotes any of the subspaces. Given a velocity v ∈ TqQ and corresponding momentum
p = Mv ∈ T ∗

q Q, these can be decomposed into

v =
vnonfix︷ ︸︸ ︷

vnorm + vslide +
vfix︷ ︸︸ ︷

vrigid + vshape︸ ︷︷ ︸
vtang

(78a)

p =
pnonfix︷ ︸︸ ︷

pnorm + pslide +
pfix︷ ︸︸ ︷

prigid + pshape︸ ︷︷ ︸
ptang

(78b)
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where the various components are the projections with the corresponding operators (77). The
components of v and p are thus mutually orthogonal with respect to the appropriate inner
products, and are individually related by M(q).

7.4. Normal and tangential components

We define the normal and tangential subspaces to be

T norm
q Q = M(q)−1 · T ∗,norm

q Q, T ∗,norm
q Q = span{dg(q)} (79a)

T
tang
q Q = (T norm

q Q)⊥, T
∗, tang
q Q = (T ∗,norm

q Q)⊥ (79b)

so that T
∗, tang
q Q = M(q) · T tang

q Q. Note also that

T
tang
q Q = ker(dg(q)) (80)

The projections onto the normal subspaces are given explicitly by

vnorm = Pnorm(v) =
(

〈dg(q), v〉
〈dg(q), dg(q)〉M(q)−1

)

M(q)−1 dg(q) (81a)

pnorm = P∗,norm(p) =
(

〈p, dg(q)〉M(q)−1

〈dg(q), dg(q)〉M(q)−1

)

dg(q) (81b)

7.5. Fixed, non-fixed and sliding components

We assume that our system is modelling a continuum mechanical system in R3 and that the
impact at q ∈ !A occurs at a spatial location x ∈ R3 between two material particles. Let 〈·, ·〉D
be an inner product on T0R3 with the associated norm ‖·‖D , giving the magnitude of velocity
vectors. Coordinate indices a, b, c range over 1, 2, 3, so that D has coordinate representation
[D]ab. The induced inner product on T ∗

0 R3 is 〈·, ·〉D−1 with coordinate representation [D−1]ab.
We define maps

h1
q, h2

q : Q → R3 (82)

so that for some other configuration q̃ ∈ Q the expressions h1
q(q̃) and h2

q(q̃) give the positions
in R3 of the two material particles which impacted at configuration q. By definition we have
h1

q(q) = h2
q(q). Now define hq : Q → R3 by

hq(q̃) = h1
q(q̃) − h2

q(q̃) (83)

so that hq(q̃) gives the separation in configuration q̃ between the two points which impacted
in configuration q. Note that hq(q) = 0. A trajectory q(t) consists of purely fixed motion if
q(t) ∈ !A, so that hq(0)(q(t)) = 0 for some q(0) ∈ !A and all times t .
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The infinitesimal version of this means that a velocity v ∈ TqQ is a purely fixed direction
if Tqhq(v) = 0, where Tqhq : TqQ → T0R3 is the tangent map of h at q, with corresponding
adjoint map T ∗

q hq : T ∗
0 R3 → T ∗

q Q. We thus define

T fix
q Q = ker(Tqhq) (84)

and using (75) the non-fixed, fixed and sliding subspaces are thus

T nonfix
q Q = M(q)−1 · T ∗,nonfix

q Q, T ∗,nonfix
q Q = range(T ∗

q hq) (85a)

T fix
q Q = (T nonfix

q Q)⊥, T ∗,fix
q Q = (T ∗,nonfix

q Q)⊥ (85b)

T slide
q Q = T nonfix

q Q ∩ T
tang
q Q, T ∗, slide

q Q = T ∗,nonfix
q Q ∩ T

∗, tang
q Q (85c)

so that T ∗,fix
q Q = M(q) · T fix

q Q and T ∗, slide
q Q = M(q) · T slide

q Q.
For hq to be a well-defined separation map, it must be compatible with the admissible

set map g in the sense that if g(q) = 0 and hq(q̃) = 0 then g(q̃) = 0. This implies that
h−1

q (0) ⊂ g−1(0) and so dg(q) ∈ range(T ∗
q hq). From (79a) and (85a), this is simply the statement

that T ∗,norm
q Q ⊂ T ∗,nonfix

q Q, as required.
Following Section 7.2, the adjoint map T ∗

q hq can also be used to induce an inner product
〈·, ·〉C(q)−1 on T ∗

0 R3 by 〈u, w〉C(q)−1 = 〈T ∗
q hqu, T ∗

q hqw〉M(q)−1 , with the corresponding map
C(q) : T0R3 → T ∗

0 R3 and the inner product 〈·, ·〉C(q) on T0R3. Arranged as a commutative
diagram this gives

(TqQ, M(q))
Tqhq !!

M(q)

""

(T0R3, C(q))

C(q)

""
(T ∗

q Q, M(q)−1) (T ∗
0 R3, C(q)−1)

T ∗
q hq

##

(86)

We assume that there is a scalar function # : Q → R such that the natural inner product D and
the induced inner product C(q) on T0R3 are related by 〈u, w〉C(q) = #(q)〈u, w〉D (all standard
continuum mechanics examples satisfy this assumption).

We can thus decompose T0R3 and T ∗
0 R3 into

T0R3 = T norm
0 R3 ⊕ T slide

0 R3 (87a)

T ∗
0 R3 = T ∗,norm

0 R3 ⊕ T ∗, slide
0 R3 (87b)

where the spaces are defined by

T norm
0 R3 = Tqhq · T norm

q Q, T slide
0 R3 = Tqhq · T slide

q Q (88a)

T ∗,norm
0 R3 = (T ∗

q hq)−1 · T ∗,norm
q Q, T ∗, slide

0 R3 = (T ∗
q hq)−1 · T ∗, slide

q Q (88b)
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so that the normal and sliding subspaces are orthogonal in both the D and C(q) inner products,
and the tangent subspaces are the images under D and C(q) of the respective cotangent
subspaces. Note that decomposition (87) depends on the reference point q ∈ !A at which we
are working.

We have the adjoint map C(q)∗ : T ∗
0 R3 → T ∗∗

0 R3 ∼= T0R3, as T0R3 is finite dimensional and
hence reflexive. Using this we can explicitly compute the projection operators (75) to be

Pnonfix = M(q)−1 · T ∗
q hq · C(q)∗ · Tqhq (89a)

P∗,nonfix = T ∗
q hq · C(q)∗ · Tqhq · M(q)−1 (89b)

Pslide = Pnonfix − Pnorm (89c)

P∗, slide = P∗,nonfix − P∗,norm (89d)

which recovers (31) and (48).

7.6. Rigid and shape components

Now let Grigid be a Lie group with Lie algebra grigid acting on Q, which represents the
allowable rigid-body motions. Coordinates on grigid are indexed by %, #. Typically Grigid will
be SE(3) or some subset thereof. We assume that Grigid acts freely on Q, and that the
admissible set function g is invariant under the action of Grigid, and thus so is the admissible
set A itself. In addition, we take the impact point separation function h to be invariant. We
denote by (Q : Q → TQ the infinitesimal generator corresponding to each element ( ∈ g of the
Lie algebra and define the map L(q) : grigid → TqQ by

L(q)(() = (Q(q) (90)

which is linear and one-to-one, as the action is free. The coordinate expression for L(q) is given
by [L(q)]i% and the adjoint map L(q)∗ : T ∗

q Q → grigid)∗ defined by 〈L(q)∗p, (〉 = 〈p, L(q)(〉 has
coordinate expression [L(q)∗]i% = [L(q)]i%.

As in Section 7.2, the inner product on TqQ naturally induces an inner product 〈·, ·〉I(q)

on grigid by 〈(, ,〉I(q) = 〈L(, L,〉M(q). The operator I(q) : grigid × grigid → R is known as the
locked inertia tensor and can be expressed as

〈(, ,〉I(q) = 〈(Q(q), ,Q(q)〉M(q) (91)

Similar to above, this also induces a map I(q) : grigid → (grigid)∗ and an inner product 〈·, ·〉I(q)−1

on (grigid)∗. We thus have the following commutative diagram, corresponding to (73):

(grigid, I(q))
L(q) !!

I(q)

""

(TqQ, M(q))

M(q)

""
((grigid)∗, I(q)−1) (T ∗

q Q, M(q)−1)
L(q)∗
##

(92)

Note finally that we have the map (I(q)−1)∗ : (grigid)∗ → (grigid)∗∗ ∼= grigid, as we assume that
grigid is finite dimensional and hence reflexive.
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The space of rigid body motions is now defined by

T
rigid
q Q = range(L(q)) (93)

and so all of the rigid and shape subspaces are

T
rigid
q Q = range(L(q)), T

∗, rigid
q Q = M(q) · T rigid

q Q (94a)

T
shape
q Q = (T

rigid
q Q)⊥ ∩ T fix

q Q, T
∗, shape
q Q = (T

∗, rigid
q Q)⊥ ∩ T ∗,fix

q Q (94b)

so that T
∗, shape
q Q = M(q) · T shape

q Q. Observe that

(T
∗, rigid
q Q)⊥ = ker(L(q)∗) (95)

The assumption that the admissible set function g is invariant under the action of Grigid implies
that 〈dg(q), L(q)(〉 = 0 for all ( ∈ grigid and hence that T

rigid
q Q is orthogonal to T norm

q Q. Sim-
ilarly, 〈T ∗

q hq(u), L(q)(〉 = 0 for all u ∈ T ∗
0 R3 and ( ∈ grigid, and so T nonfix

q Q is also orthogonal

to T
rigid
q Q.

To compute the rigid body projection, we use (75) to see that

vrigid = Prigid(v) = L(q)(I(q)−1)∗L(q)∗M(q)v (96a)

prigid = P∗, rigid(p) = M(q)L(q)(I(q)−1)∗L(q)∗p (96b)

Finally, the shape projection operators are given by

vshape = Pshape(v) = (Pfix − Prigid)v (97a)

pshape = P∗, shape(p) = (P∗,fix − P∗, rigid)p (97b)

7.7. Rigid-body momenta preservation

To ensure that the total linear and angular momentum of the system is preserved through the
impact, it is important that the normal and frictional impulses introduce no net force or torque.

Friction is assumed to act only in the sliding direction, so we required in Section 4.4 that
Islide ∈ T ∗, slide

q Q. This implies that the frictional impulse is orthogonal to the normal impulse,
and also that it does not break the symmetry action of the group Grigid, so the friction will
not interfere with the conservation of angular and linear momentum. The general condition for
Islide to not break the symmetry is that

〈Islide, (Q(qc)〉 = 0 for all ( ∈ grigid (98)

(see, for example, Reference [10, Section 3.1.4]). Given the definition (94a) of T
∗, rigid
q Q, we

thus see that requirement (98) is exactly the same as requiring Islide ∈ (T
∗, rigid
q Q)⊥. Clearly

this is satisfied by requiring Islide ∈ T ∗, slide
q Q.
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Recall furthermore that in (80), (95) and (84) we observed that (T norm
q Q)⊥ = ker(dg(q)),

(T
∗,rigid
q Q)⊥ = ker(L(q)∗) and (T nonfix

q Q)⊥ = ker(Tqhq), so that

〈dg(q), vslide〉 = 〈dg(q), vrigid〉 = 〈dg(q), vshape〉 = 0 (99a)

L(q)∗(pnorm) = L(q)∗(pslide) = L(q)∗(pshape) = 0 (99b)

Tqhq(prigid) = Tqhq(pshape) = 0 (99c)

Here (99b) includes the statement that the normal impulse will not induce any rigid-body
motions, while (99a) restates the fact that the sliding, rigid and shape velocities are non-normal,
and (99c) shows that the rigid and shape momenta will not cause separation, interpenetration,
or sliding.

8. CONCLUSIONS AND FUTURE DIRECTIONS

We derived a new explicit contact enforcement algorithm, termed decomposition contact re-
sponse, starting from the conceptual non-smooth geometric mechanics framework. The overall
algorithm is robust—it resolves the collisions between smooth and non-smooth bodies—and
exhibits very good conservation properties in terms of linear and angular momentum as well
as total energy. The closest point projections used for removing the interpenetrations introduce
some spurious non-conservative effects, however these are minimal on the scale of the total
momentum or energy of the system. As discussed, these effects can be further minimized by
incorporating the work performed by the nodal forces during the projection into the energy
balance.

In closing, a number of possible extensions of the theory are worth mentioning. Firstly,
for bodies with smooth boundaries subdivision schemes [20] may be used for discretizing
and parameterizing the contact surface. Although as demonstrated in the examples, simply the
control mesh may be used for enforcing contact constraints. Proper treatment of smooth sur-
faces increases the fidelity of the contact stresses and forces as recently reported by several
authors [24–26]. A further possible worthwhile future research direction is the study of con-
vergence of the DCR method and in particular the interplay with the Newmark time-stepping
scheme used here.
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