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ABSTRACT

This study evaluates the error that is introduced in quantifying observed aerosol mixing
states due to a limited particle sample size. We used the particle-resolved model PartMC-
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MOSAIC to generate a scenario library that encompasses a large number of reference par-

ticle populations with a wide range of mixing states quantified by the mixing-state index y.
We stochastically sub-sampled these particle populations using sample sizes of 10 to 10,000
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particles and recalculated y based on the sub-samples. The finite sample size led to a con-
sistent overestimation of y, with the 95% confidence intervals ranging from —70 to 30 per-
centage points for sample sizes of 10 particles, and decreasing to £10 percentage points for
sample sizes of 10,000 particles. These findings were experimentally confirmed with single-
particle measurements from the Pittsburgh area using a soot-particle aerosol mass

spectrometer.

1. Introduction

Atmospheric aerosols are evolving mixtures of differ-
ent chemical species (Prather, Hatch, and Grassian
2008). The term “aerosol mixing state” is commonly
used to describe how different chemical species are
distributed throughout a particle population (Winkler
1973; Riemer et al. 2019). Aerosol mixing state influ-
ences the particles’ reactivity (Ryder et al. 2014), their
optical properties (Moffet and Prather 2009; Lesins,
Chylek, and Lohmann 2002), their hygroscopicity
(Sullivan et al. 2009; Ching et al. 2017), and their pro-
pensity to serve as ice nuclei (Beydoun, Polen, and
Sullivan 2017; Knopf and Alpert 2013). Hence, to pre-
dict aerosol impacts on atmospheric chemistry and
climate, it is important to account for mixing state
(Riemer et al. 2019); and this motivates efforts to
determine mixing state from ambient observations
(Healy et al. 2014; O’Brien et al., 2015; Ye et al. 2018)
and via modeling (Riemer et al. 2009; Riemer and
West 2013; Ching, Riemer, and West 2016).

The terms “internal” and “external” mixture quali-
tatively describe mixing state. A population is consid-
ered fully internally mixed if each individual particle

consists of the same species mixtures, while an exter-
nal mixture implies that the different aerosol species
reside in separate particles. Most ambient aerosol pop-
ulations do not fit into either category, but resemble
both internal and external mixtures to a degree. Often
the term “mixing state” is applied to particles in a
given size range, for example the accumulation mode
or the coarse mode. This choice depends on the aero-
sol sampling instrumentation specifications or the sci-
ence question being addressed. It is also important to
be aware that mixing state as defined here does not
capture the full potential diversity of particle popula-
tions, as the particle morphology (e.g., core-shell,
well-mixed) can add additional diversity. In this art-
icle, we will only consider mixing state as defined
above, which is also termed the “chemical mixing
state” in Riemer et al. (2019).

For a quantitative description of aerosol mixing
state, the mixing-state index y has been introduced
(Riemer and West 2013), which can be calculated
based on the particles’ species mass fractions. This
scalar quantity ranges from 0 to 100% for fully exter-
nal to internal mixtures, respectively. Several field
studies have used this index to quantify mixing states
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for different ambient environments using sophisti-
cated single-particle measurement techniques, includ-
ing electron microscopy and X-ray spectroscopy
(O’Brien et al., 2015), and mass spectrometry (Healy
et al. 2013). These observations confirm that mixing
states in the ambient atmosphere are neither com-
pletely internally nor externally mixed but rather exist
on a spectrum in between those limiting cases with
characteristic temporal and spatial variability. For
example, a study by Healy et al. (2014) for the
MEGAPOLI campaign in Paris, France, revealed that
the aerosol in Paris was estimated to be 59% internally
mixed on average, with more external mixtures during
the daytime when primary emissions from traffic and
woodburning were present, and more internal mix-
tures during the night when ammonium nitrate
formation prevailed. Healy et al. (2014) used single-
particle aerosol time-of-flight mass spectrometry
(ATOFMS) data for their study. Ye et al. (2018) quan-
tified the spatial variation of y for the city of
Pittsburgh on a neighborhood scale with a mobile
measurement platform using single-particle measure-
ments from a soot-particle aerosol mass spectrometer
(SP-AMS) and found the lowest values (36%) close to
an interstate highway and the highest values (76%) in
rural or suburban regions.

The mixing-state index y is based on species diver-
sity measures (Riemer and West 2013), which have
been extensively used and developed in ecology and
related fields. See Daly, Baetens, and Baets (2018) for
an excellent overview and Sherwin and Prat I Fornells
(2019) for a discussion of the history. Within ecology
it is well-known that undersampling can result in
inaccurate and biased estimates of diversity measures
(Beck and Schwanghart 2010; Beck, Holloway, and
Schwanghart 2013) and the performance of different
statistical methods has been studied for realistic scen-
arios (Butturi-Gomes et al. 2017; Brocklehurst, Day,
and Frobisch 2018). In response, better estimators
have been proposed that are based on the discovery
rate of new species (Chao, Wang, and Jost 2013; Chao
and Jost 2015; Haegeman et al. 2013), measures such
as pairwise dissimilarities (Marion 2016) have been
used as alternatives, and Bayesian estimators have
been developed (Marion, Fordyce, and
Fitzpatrick 2018).

Just as undersampling is a problem in ecology,
measurements of atmospheric aerosols inherently
sample a finite number of particles to estimate the
mixing state and associated metrics. These finite sam-
ples range from a few hundred to many thousands of
particles, depending on the instrumentation. For

example, O’Brien et al. (2015) utilized electron
microscopy and X-ray spectroscopy methods to ana-
lyze particle samples from the 2010 Carbonaceous
Aerosols and Radiative Effects study with sample
sizes ranging from several hundred to several thou-
sand particles. Ye et al. (2018) used single-particle
mass spectrometry with sample sizes on the order of
tens of thousand of particles. Unfortunately, we can-
not directly apply the improved diversity estimators
developed in ecology (Chao and Jost 2015) because
they use the fact that species abundance is measured
by sampling individuals in the species, a concept
that does not readily transfer to chemical
measurements.

The question arises of how large a particle sample
size must be to adequately represent the mixing state
of an atmospheric aerosol. Using a large ensemble of
simulated aerosol populations generated with a par-
ticle-resolved model, the goal of this article is to quan-
tify errors in determining y introduced by limited-size
particle samples. Since the “true” value of y is not
known when making observations in practice, we also
provide confidence intervals around the measured yx
values for different sample sizes.

2. Methods
2.1. Calculating mixing-state index y

The mixing-state index y by Riemer and West (2013)
provides a rigorous definition of aerosol mixing state.
It is given by the affine ratio of the diversity metrics
D, and D, as

(1)

The diversity metrics, in turn, are defined as follows.
First, the particle mixing entropies H; need to be cal-
culated for each particle based on the particle species
mass fractions

A
Hy= " —piInpf, 2)
a=1

where A is the number of distinct aerosol species, and
p? is the mass fraction of species a in particle i. The
particle diversities D; = exp (H;) give the effective
number of species in each particle, which is equal to
the number of physical species if they are all present
in equal proportions, and less otherwise.

The particle H; values are then averaged (mass-
weighted) over the entire population to give H,, and
finally the average particle species diversity D,, by



NP

H, =) pH, (3)
i=1

D, = e, (4)

where Nj, is the total number of particles in the popu-
lation, and p; is the mass fraction of particle i in the
population. D, is the mean particle diversity, which
gives the mean effective number of species over all par-
ticles in the population.

Lastly, the bulk diversity D, is defined by

A

H'\/v - Z _pa lnpaa (5)
a=1

D, = el (6)

This is the total diversity of the population, which is
the effective number of species in the aerosol bulk.

Importantly, the definition of “species” depends on
the application or the instrumentation used to deter-
mine mass fractions. In some previous studies, elem-
ental species have been used (O’Brien et al., 2015;
Fraund et al. 2017; Bondy et al. 2018), while others
used molecular species (Healy et al. 2014; Ye et al.
2018) or species groups (Dickau et al. 2016; Ching
et al. 2017; Hughes et al. 2018). To make our results
comparable to Ye et al. (2018) (who observed organ-
ics, nitrate, sulfate, chloride and black carbon, as
detected by the soot-particle aerosol mass spectrom-
eter), we chose the aerosol model species that consti-
tute the dry aerosol mass, such as ammonium, sulfate,
nitrate, black carbon, as well as several organic spe-
cies, with the addition of dust and sodium chloride.
Note that the soot-particle aerosol mass spectrometer
cannot measure dust and sodium chloride. Aerosol
water is excluded from our calculations. While our
scenario library includes coarse-mode particles, we
only included sub-micron particles in our calculations
for yx, since this is the relevant size range for ambient
measurements using AMS instruments.

2.2. PartMC-MOSAIC model description

PartMC-MOSAIC is a unique modeling tool to simu-
late aerosol mixing state and its impacts under a wide
variety of conditions. With this tool, each particle can
be represented explicitly, allowing for accurate calcula-
tions of single-particle species mass fraction This is in
contrast to other common aerosol modeling techni-
ques which represent averages of particle composition
over certain size ranges rather than per-particle com-
position (Riemer et al. 2019). A detailed description of
PartMC-MOSAIC is given in Riemer et al. (2009). In
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brief, PartMC (Particle-resolved Monte Carlo) is a box
model that explicitly resolves composition on a per-
particle level within a well-mixed computational vol-
ume representative of a much larger air parcel. The
evolution of the particle population—due to Brownian
coagulation, emission and dilution—is tracked
throughout the simulation using the Monte Carlo
approach. PartMC is coupled to MOSAIC (Model for
Simulating Aerosol Interactions and Chemistry)
(Zaveri et al. 2008) which models gas-phase chemistry
and gas-particle partitioning (condensation processes).
MOSAIC consists of four modules: (1) the gas-phase
photochemistry mechanism CBM-Z (Zaveri and
Peters 1999), (2) the Multicomponent Taylor
Expansion Method (MTEM) (Zaveri, Easter, and
Wexler 2005b), (3) the Multicomponent Equilibrium
Solver for Aerosols (MESA) for intraparticle solid-
liquid partitioning (Zaveri, Easter, and Peters 2005a),
and (4) the Adaptive Step Time-split Euler Method
(ASTEM) for dynamic gas-particle partitioning
(Zaveri et al. 2008). To simulate secondary organic
aerosol (SOA) the SORGAM scheme is used (Schell
et al. 2001). MOSAIC treats all locally and globally
important gas and aerosol species including a total of
77 gaseous species and 19 aerosol species including
SO; ,HSO,,NO;,Cl~,CO;,NH/,Na",Ca**, other
inorganic mass (representing crustal material), black
carbon (BC), primary organic aerosol (POA)
and SOA.

2.3. Ensemble of scenarios and sampling
technique

To generate confidence intervals for y for a wide
range of conditions, we made use of a scenario library
comprising 1000 different PartMC-MOSAIC scenarios
(Hughes et al. 2018). All scenarios used a simulation
time of 24 h, starting at 6:00 AM local time, with out-
put saved every hour. Each simulation was run using
100,000 computational particles, producing a high-
resolution representation of aerosol mixing state.
Twenty-four input parameters (temperature, relative
humidity, latitude, gas phase emission rates, emission
rates, size parameters and composition of primary
aerosol particles, including carbonaceous particles, sea
salt, and mineral dust) were varied between scenarios
to allow for large variations in mixing-state evolution.
The scenario inputs were generated using Latin hyper-
cube sampling to provide efficient sampling across the
high-dimensional input parameter space. The entire
scenario library generated 24,000 distinct reference
particle populations (24h x 1000 scenarios) (Gasparik
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Figure 1. Frequency distribution of /Sam for one example population (y.s = 46%) and different sample S|zes For each sample
size, the sampling process was repeated 1000 times. The dashed colored lines correspond to the average /(samp for the specified

sample size.

et al. 2020). For each reference population we calcu-
lated the reference value y,.r of the mixing-state index.

To mimic the sampling process used in single-par-
ticle field measurements, we subsampled each refer-
ence population without replacement using different
sample sizes (N = 10, 100, 1000, 10,000). To determine
confidence intervals we repeated each subsampling
1000 times, which resulted in 24,000,000 sampled par-
ticle populations (24h x 1000 scenarios x 1000 sam-
ples) for each sample size N. For each sampled
population we recalculated y using only the particles
in the sample and we denoted these y values as xgmp.
Similarly, DY samp and DNsamp are the «- and y-diver-
sities computed used only the sampled particles.

It is important to note that even the large number
of 100,000 computational particles still represents
an—albeit large—subsample of the “true” limiting
population with a (near-)infinite number of particles.
The key point is that the error between the 100,000
particle sample and the true population is expected to
be much smaller than the error between our largest
subsample (10,000 particles) and the true population.
This is a reasonable assumption as the error scales
with 1/ VN, meaning that the error for the 100,000-
particle sample is a factor of \/10 smaller than that of
the 10,000-sample. To maintain this V10 factor, we
limit the largest sample to 10% of the size of our ref-
erence population.

Figure 1 illustrates this process for one single refer-
ence population. In this case, y.r was 46%. Sampling
this population with only 10 particles produced a
broad range of xsamp values from 20 to 100%. This
range narrowed progressively as N increased, resulting
in a range of 41 to 50% for a sample size of 10,000
particles. Another important result is that for small
sample sizes, X]s\;mp overestimates y..r In Section 3, we
will see that this positive bias is a consistent result of
the sampling process that can be explained with the
fact that on average a sub-population overestimates
D, and underestimates D,. A rigorous proof is pro-
vided in Section 4.

2.4. Experimental determination of y using
observations in Pittsburgh

To provide experimental confirmation for the par-
ticle-resolved modeling results, a similar analysis was
conducted using field data from Ye et al. (2018). In
this study, aerosol samples were collected using the
single-particle mode of a soot-particle aerosol mass
spectrometer on a mobile platform throughout the
city of Pittsburgh, PA.

The seven major particle clusters or types identified
in the Pittsburgh mobile sampling data set were classi-
fied as: a sulfate-rich inorganic class that also con-
tained OA and nitrate measured in the summer, a
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Figure 2. Distribution of sampled population mixing-state index xé"amp and reference mixing-state index s for increasing sample
sizes based on the simulated scenario library described in Section 2.3. The solid black line is the 1:1line.

nitrate-domoinated class with small amounts of sulfate
and little OA measured in the winter, less-oxidized
hydrocarbon-like organics (HOA) associated with
vehicle emissions, less-oxidized cooking-like organic
aerosol (COA) associated with restaurant emissions,
black carbon-dominated with small amounts of OA or
inorganics, more-oxygeneated OA rich, and less-oxy-
geneated OA rich (Ye et al. 2018). The later two OA-
rich classes contained small amounts of inorganics.
Differences in particle composition and mixing state
and of these properties as a function of particle size
were observed in different sampled environments that
included: in highly trafficked tunnels, on highways, an
urban area with high traffic density, and on a road
through a large park. Other specific environments that
produced unique particle mixing states included:
inside a restaurant plume (COA dominated), down-
town with high restaurant density (mixture of COA,
inorganics, and HOA), and a suburban residential
area with low restaurant density (diverse mixture of
inorganics, OA, COA, and HOA) (Ye et al. 2018).
Three aerosol samples were used for the analysis
here including the sample collected in Pittsburgh
downtown (~11,000 particles), at the Carnegie Mellon
University (CMU) urban campus in the summer
(~15,000 particles) and at the CMU campus in the
winter (~47,000 particles). Aerosols collected in
Pittsburgh downtown were chosen to represent sam-
ples from regions that are in close proximity to sour-
ces of primary particles, while the CMU campus
represents an urban background. Aerosol populations
collected in Pittsburgh downtown were a combination
of six visits to downtown, and the sampling time for
each visit ranged between 30min and 1h. Aerosol
populations collected on CMU campus were aggre-
gated over several hours to a day. Based on the single-
particle spectra of the three populations, per-particle
mass fractions were determined and mixing state indi-
ces Jrr were calculated for each population. Five

species are considered for calculations of the mixing
state index: organics, nitrate, sulfate, chloride and
black carbon. Ammonium is not considered due to
the large interference from the water signal in the
mass spectra in the single-particle aerosol mass spec-
trometer. For more details about the method of using
a soot-particle aerosol mass spectrometer to determine
per-particle mass fractions and the mixing state index,
please see Ye et al. (2018). Populations of 10, 100, and
1000 particles were stochastically sampled from the
full particle samples from each location. Since the full
particle samples are on the order of tens of thousand
particles, our largest subsample is 1000, with the
rationale explained in Section 2.3. The mixing state
indices y.mp were calculated for each of the limited
sample sizes and used for comparative analysis in
this article.

3. Numerical and observational results

The sampling results are presented as two-dimen-
sional histograms that, for each sample size N, include
all 1000 samples of the 24,000 simulated reference
populations (resulting in 24,000,000 data points for
each sample size). Figure 2 shows X]s\;mp Versus Yy.r for
the four sample sizes. Estimating y,.r based on a par-
ticle sample of only 10 particles led to results that can
greatly overestimate or underestimate y,.r As the sam-
ple size increased from 10 to 10,000 particles the
points converged on the one-to-one line, meaning
that sampled mixing-state values more accurately
approximate the associated reference values.

Figure 3 shows the corresponding plot using the
field data from Pittsburgh. Each vertical cluster of
points corresponds to data from a location or time
period where the sampling occurred. Each of these
clusters has a different y,.r value, calculated from the
full samples discussed in Section 2.4. For the down-
town location, the y.s value was lowest (40%),
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Figure 4. Distribution of average sampled Z’SVamp (averaged over the 1000 repeats) and ys for increasing sample sizes based on
the simulated scenario library described in Section 2.3. The one-to-one line is drawn for reference.

consistent with the expectation for an area where fresh
emissions mix with more aged aerosol. The aerosol at
the CMU campus during winter (j,.; = 51%) was more
externally mixed compared to the summer period
(Yref = 72%). This can be explained by the more exten-
sive photochemical oxidation that drives the production
of condensible secondary components, which condense
onto preexisting particles and thus homogenize aerosol
composition. A more detailed discussion on the spatial
and temporal variability of aerosol mixing state in the
Pittsburgh area can be found in Ye et al. (2018). Similar
to the procedure used to analyze the modeled results,
each jy.f population was stochastically sub-sampled,
which resulted in a range of Xgmp values that converged
to the reference value as N increased.

Both the simulation (Figure 2) and field data
(Figure 3) results show that the sampled y, has a
positive bias. That is, it tends to be larger than the
reference .. To investigate this more precisely, we
computed the average Zﬁmp for the simulation data,
where the average is taken over all 1000 repeats and is

mass-weighted (see Section 4.2 for details). This quan-
tity is plotted versus y.r in Figure 4. In contrast to
Figure 2 which displayed all individual 1000 x 24,000
data points, Figure 4 shows the averages over the
1000 repeats. This lets us see the patterns more clearly
and confirms that Xﬁmp is positively biased (above the
one-to-one line). As expected, the bias vanished as the
sample size increased from 10 to 10,000 particles. The
question arises of how this bias can be explained. In
particular, since y is the affine ratio of the average
particle species diversity D, and the bulk diversity D,
(Equation (1)), we need to determine the effect of
sub-sampling on estimating these quantities individu-
ally before calculating the ratio.

The positive bias is a result of biases in the average
sampled diversity metrics, Bisamp and Bijsamp. Figures
5 and 6 show the averaged sampled diversities versus
reference diversities for the simulated populations.
That is, Figure 5 shows the quantity needed for the
numerator in Equation (1), and Figure 6 shows the
quantity needed for the denominator in Equation (1).
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These show that, on average, sampling overestimates
the mean particle diversity (D,) and underestimates
the total diversity (D,). Said another way, using a
sample of particles will lead us to think that the aver-
age particle has more effective species than are really
present, but that the bulk has less effective species
than it actually does. Because y is the affine ratio of
mean particle to total diversity (see Equation (1)), y is
thus overestimated. Writing these numerical observa-
tions in equations, we have

=N
D > Da(, ref>

o,samp —

[sampled populations overestimate mean particle diversity]

(7)

—=N
D < Dy, ref>

7,samp —

[sampled populations underestimate total diversity]
(8)
Zﬁimp 2 Kref -
[sampled populations overestimate mixing-state index]
(9)

Section 4 provides rigorous definitions of the sam-
pling and averaging procedures and proves certain
aspects of the above results.

To understand how many particles we should sam-
ple to be confident that the error is likely below some
threshold, it is helpful to think about confidence inter-
vals for the reference y. The 95% confidence intervals
for reference values, y.f are shown in Figure 7 as a
range Ay about the sampled values Xﬁ\;mp' This means
that, if we measure a xgmp value from a sampled par-
ticle population, 95% of the time the true y.r value
will fall within the range Xﬁimp + Ay.

For small sample sizes N, the confidence interval is
highly asymmetric and larger for populations that
appear more internally mixed. For example, assuming
that a sample of 10 particles is used to compute a
sampled zio . value of 20%, the 95% confidence inter-
val for the reference y.r for the whole population
extends from 15% to 45% (i.e., Ay ranges from —5 to
+ 25 percentage points). In contrast, for a Xslgmp value
of 90%, the confidence interval extends from 20% to
95% (Ay from —70 to + 5 points).

For large sample sizes (e.g., N=10,000), the confi-
dence interval is narrow for large and small sampled
y values. It broadens for intermediate y values, but
remains within +10 percentage points. It is reasonable
that both highly diverse (low y) and highly homoge-
neous (high y) populations can have their mixing state
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Figure 7. 95%-Confidence intervals for sampled x’s\gmp values for sample sizes of N=10, 100, 1000, and 10,000 particles based on

the simulated scenario library described in Section 2.3.

measured well from a reasonably small sample. More
complex distributions with intermediate y require the
sampling of more particles to obtain accurate esti-
mates of the mixing state index.

By the central limit theorem, we expect that the
sampling error should decrease proportionally to the
square root of the number of particles. We can
observe this in Figure 7, where going from N =1000
to N=10,000 particles reduced the 95% confidence
interval bound by a factor of 3 (from 30 percentage
points to 10 points), which is approximately v/10, the
square root of the increase in the number of samples.

Considering that the true y value of a population is
not known a priori, our results suggest that a sample size
of 1000 particles is needed to obtain an estimate of y
within 30 percentage points and 10,000 particles are
needed to determine y within 10 percentage points for
any mixing state.

4. Mathematical proofs

In Section 3 we have seen that ngp is positively
biased, which was caused by a positive bias in
Ezsamp, a negative bias in stamp, and the fact that
x= (D, —1)/(D, —1). In this section, we will show
that the overestimation of D, and underestimation of
D, are both consequences of the entropy averaging
procedures combined with convexity of the exponen-
tial function (for D,) and concavity of the entropy

function (for D,). To do this, we will start by precisely

defining what we mean by sampling and averaging,
and then we will prove the results themselves.

4.1. Notation for sampled particle populations

We consider a reference population of particles to be a
set T = {[i},....Jiy}.- We use uppercase letters I, ] to
denote reference particle indices in 7. Each particle is
a vector fi; € R* with coordinates i; = (ul, ..., uf),
where each coordinate uf is the mass of species a in
particle I. We use superscripts for species indexes and
subscripts for particle indexes.

Consider sampled populations {mi,...,ms} from 7.
Each sampled population 7, = {i;,..., fig .} has N;
particles corresponding to reference particle indices
I 1,.. Iy n,. We use lowercase letters i, j for sampled
particle indices and we write ji,; for the i-th particle
in sample s. The mass of species a in particle i of
sample s is thus xf ;. The sampled particle [i, ; is equal
to reference particle ji; with I =I;, so the set of all
reference particle indexes in a given sampled popula-
tion is Z; = {IL;|i = 1, ..., Ni}.

Given a per-particle quantity X;, we write X, ; = X;
when the reference index matches the sampled par-
ticle index: I = I ;. To understand sampled diversities
versus reference-population diversities, we want to
compare mass-weighted averages computed over the
reference population, and over sampled populations.
To do this, we will now introduce the Iverson bracket
and the key averaging lemma (Lemma 1).



The Iverson bracket gives a binary indicator of set

membership:

0 otherwise. (10)

Using the Iverson bracket we can translate between
local and global indexes:

N N
Y Xoi=> l1eTlx. (11)
i=1

I=1

In this article we consider particle populations to be
sets, which means that all particles in the population
must have at least one species with a different mass. In
particular, this excludes monodisperse populations. To
overcome this limitation we could consider populations
to be multisets in the sense of (Knuth 1998, p. 473).
Roughly speaking, a multiset is an extension of a set to
allow elements to appear multiple times and for which
the set union W and set union \ operators have been
appropriately extended. For multisets, the equivalent to
the Iverson bracket is the multiplicity operator which
gives the integer number of occurrences of any particle
in the population. All the theoretical results in this art-
icle carry through for multisets, but we restrict our-
selves to regular sets for convenience.

4.2. Mass fractions and mass-weighted probability
distributions

Given a reference population 7 = {f,,...,ly} and
sampled populations 7, = {ii |, ..., s .} fors =1,...,S,
as described in Section 4.1, we define the total masses:
A
Uy = Z Ui, [total mass of reference particle I
a=1

(12)

Ut = Z ;> [total mass of reference population]

=1
(13)
= Z 1 » [total mass of particle i
a=1
in sampled populations] (14)
Ny
K tor = Z U ;> [total mass of sampled populations]
(15)
s
Hsamp, tot = Z [is 1o~ [total mass of all
s=1
sampled populations] (16)

From this we define the mass fractions (or probabil-
ities):
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pr= ﬁ, [mass fraction of reference particle I] (17)
Hiot
Dsi = &, [mass fraction of particle i
Hs, tot
in sampled population s (18)
Ps ot = oot [mass fraction of sampled population s]
Hsamp, tot

(19)

Interpreting these mass fractions as probabilities gives
mass-weighted probability distributions over particle
populations. For example, we can define the distribu-
tion p; to be the distribution over reference particles so
that the probability I ~ p; of reference particle I is p;.
Doing this similarly for p, ; and p; (ot gives us probabil-
ity distributions over sampled particles and the set of
sampled populations. Note that we are using roman-let-
ter subscripts to denote probability distributions.

Consider a quantity X that can be indexed by either
the reference particle index, X, the sampled particle
indexes, X, ;, or the sampled population index, Xj tot-
Then we can compute expected values with respect to
the mass-weighted probability distributions by averag-
ing over the corresponding sets:

Z piXy =

Eiep, [X1] = Z ad X, [reference average]

I=1 ot

(20)

N;
z~ps, g Psz S, i

M;

X, i» [sample average]  (21)
i=1 :us tot

Es~ps tot s tot Ps, toth tot

s tot

X, tot- [average over samples|

Y
>

samp tot
(22)
4.3. Entropy and diversity measures of
mixing state

The entropy H associated with a vector p of mass
fractions (equivalently, probabilities) is

= " p*log (p). (23)
a=1

The diversity D is the exponential of the entropy:
D(p) = exp (H(p)). (24)

Importantly, entropy is a concave function, which is fun-

damental to our results on over- and under-estimation of
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mixing-state measures. In fact, entropy is also log-concave
in low dimensions (Alirezaei and Mathar 2018), which
will be used in the proof of Theorem 4.

The mass fractions in a particle (equivalently, spe-
cies probability vector) can be indexed by either refer-
ence or sampled particle indexes. These are thus:

P = &, [species mass fractions in reference particle I
Ky

(25)

—

—

Py = Psi [species mass fractions in particle
' Hsi (26)

i in sampled population s]
Using the particle species mass fraction vectors, we
denote the particle entropy by H; = H(p,) with refer-
ence particle indexes and Hs; = H(p_ ;) with sampled
particle indexes. Similarly, we write D; and D, ; for
the corresponding diversities.

The o-entropy of a particle population is the mass-
weighted average of the particle entropies, with the
corresponding o-diversity. That is, o-entropies and
a-diversities for our populations are

N
Hzx, ref = ZPIHI
=1

= Eip, [Hi], |x-entropy of reference population]
(27)

N
Ha,szg ps,iHsz
i=1

=Eip,,[H;,i], [2-entropy of sampled populations]
(28)
Dy ref = €xXp (Hyrer ), [o-diversity of reference population]
(29)

[a-diversity of sampled populations]
(30)

Dy s=exp(Hy;).

The y-entropy of a population is the entropy of the
mass-weighted average composition vector, with the cor-
responding y-diversity. That is, while o-entropy is the
average of entropies, y-entropy is the entropy of the aver-
age. This gives:

Hy et = <szp1>

H(E;, [PJ ), [y-entropy of reference population]

(31)

N
H, = H( Zps, iﬁs,i)
i=1

= H(Eiv,,[P,]), [7-entropy of sampled populations]

(32)

D, ref = exp (H,,ref), [y-diversity of reference population]
(33)
D, ;= exp(H,;). [y-diversity of sampled populations]

(34)

From the population diversities we define the overall
mixing-state index of a population to be the affine
ratio:

D, —1
et :L, [mixing-state index of reference
Dy,ref -1
population] (35)
Dy—1 . .. .
XS:D - [mixing-state index of sampled
7

populations| (36)

We are particularly interested in the average sampled
entropies and diversities, where the mass-weighted
average is taken over all sampled populations. This
gives

H,, samp = Eowp,[Hy, 5], [average sampled a-entropy]

(37)
H, amp = Eop [H,,s], [average sampled y-entropy]

(38)
Dy samp = Eswp,[Dy,5], [average sampled o-diversity]

(39)

D, amp = Esp,[Dy,s], [average sampled y-diversity]

(40)
Tsamp = Es~p, %] [average sampled mixing-state index]
(41)

4.4. Fair sampling and a fundamental lemma

The sampled populations may all contain the same
number of particles, in which case N; is independent
of s, or they may be of different sizes. Our theoretical
results apply in either case, so long as we assume that
the sampled populations sample all particles fairly. To
make this precise, we define N; to be the number of
sampled populations containing particle I:

XS: 1€1y. (42)

Using this, we make our
as follows.

Assumption 1 (Uniform sampling). Each particle in
the population appears in the same number of sampled

populations, so N; = Nj for any I,] = 1,...,N.

assumption precise



Lemma 1. Given a per-particle quantity X indexed
both by the reference index, X;, and sampled popula-
tion indexes, X, ;, the mass-weighted average of X over
all particles in all sampled populations is the same as
the mass-weighted average over all reference particles:

E5~P5,(ot {EiNPs,i [XS) 1] ] = EINPI [XI} N (43)

Xs, tot

Proof. Starting from the left hand side (LHS) of (43),
we compute:

S M N; L ;
LHS = Z s, tot S, i

X,,i [Equations (21) and (22)]
=1 Msamp, tot =7 Hs, tot
(44)

1 S N;
= Do neXo (45)

:usamp,tot s=1 i=1

1 N
= e D KK
S 2 2

,ios=1 i=1

[Equations (15)

1 S N
= I €ZmX
S YN et 2.2 o

and (16)] (46)

Iy = =
[Equation (11)] (47)
1 N s
— WXy [[€Zy (48)
SBSRTEIP LD
;Z 1;X;N; [Equation (42)] (49)
Z} 1y Ny 1=
1
Z,uIXI [Assumption 1] (50)
Z} 14 1=
= Ejp, [Xi]. [Equations (13) and (20)] (51)

4.5. Theoretical sampling results for mixing-
state measures

We are now ready to prove our main results, which
describe how the average sampled entropies and
diversities relate to the reference entropies and diver-
sities. To summarize, we will show that

H. samp = Hyret> [exactly estimate o

-entropy from samples| (52)

H, qamp < H,, ref, [underestimate y

-entropy from samples] (53)
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ﬁa)samp > D, ref, [OVerestimate a-diversity from samples]
(54)
ﬁ,)samp <D, ref- [underestimate y-diversity from samples

(only with 2 or 3 species)] (55)

See Figures 5 and 6 for numerical simulations that
confirm (54) and (55), respectively.

The mixing-state index x is the affine ratio of D,
to D,, so overestimating D, and underestimating D,
makes it plausible that the average sampled 7., val-
ues will overestimate the reference y..r As shown in
Figure 4, numerical simulations on atmospherically
relevant particle populations show that 7, values
do indeed overestimate y..; However, because D, ; is
correlated with D, ;, it is not straightforward to prove
a precise relationship between 7, and et

In all of the following results we are using mass-
weighted averages, as defined in Section 4.2, which is
natural because o- and y-entropy are mass-weighted
quantities. We begin by showing that mass-weighted
averaging results in reference and sampled o-diver-
sities being equal on average.

Theorem 1 (Sampled o-entropy). If the sampled popu-
lations are drawn uniformly from the reference popula-

tion (Assumption 1) then the average sampled
o-entropy is equal to the reference o-entropy:
Hy,samp = Ho, ref- (56)
Proof. We compute
H,, samp = Eop,[Hy,s] [Definition of Hy sump (57)
= Eqp, [Einp,, [H(D, ;)]] [Definition of H, ]
(58)
= Erp, [H(‘BI)] [Lemma 1] (59)
= H, - [Definition of H, yf] (60)
[

Next, we show that concavity of entropy means that
y-entropy is consistently underestimated from sampled
populations.

Theorem 2 (Sampled y-entropy). If the sampled popu-
lations are drawn uniformly from the reference popula-
tion (Assumption 1) then the average sampled y-entropy
is less than or equal to the reference y-entropy:

Hy,samp < Hy, ref - (61)

Proof. Similarly to Theorem 1, but with expectations
and entropy reversed, we compute
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Dq

t i >
Ha,l Ha,ref Ha,2 Ha

Figure 8. Schematic to illustrate Theorem 3. Here we consider
two sampled populations with a-diversities of H,; and H, ,
which we assume have average exactly equal to the reference
value H,, f (this is true on average, as we saw from Theorem
1). The exponential function maps entropies H to diversities D,

and because it is convex the average sampled value, D, samp,
will be greater than the reference value, D, ref.

H, amp = Eoup,[H,,s] [Definition of H, sy (62)
= Eovy, [H(Einp,,[P,;])] [Definition of H, ]
(63)

<H(Esp, [Einp,, [Pi]])
[Jensen'sinequality and concavity of H] ~ (64)

=H(E;y, [p;]) [Lemma 1] (65)
=H, et [Definition of H, ] (66)
O

Having established the average behavior of sampled
entropies, we now turn our attention to sampled diver-
sities. We begin by showing that the o-diversity is consist-
ently overestimated from sampled populations, as we saw
in Figure 5. The reason for this overestimation is that the
exponential function is convex, as illustrated in Figure 8.

Theorem 3 (Sampled «-diversity). If the sampled popula-
tions are drawn uniformly from the reference population
(Assumption 1) then the average sampled o-diversity is
greater than or equal to the reference o-diversity:

Doc,samp > Doc,ref- (67)
Proof. Using Theorem 1 gives
D, samp = Esep,[Das] [Deﬁnition of B%samp] (68)

= E;p [exp (H,,;)] [Diversity is the exponential
of entropy] (69)
> exp (Esp,[Hy,]) [Jensen's inequality and
convexity of exp] (70)

Dy ref Dy o

—
D-y,samp

®

P1 Pref %) p

Figure 9. Schematic to illustrate Theorem 4 in the case of a
two-species aerosol population, where p is the mass fraction
of the first species. We consider two sampled populations with
first-species mass-fractions of p; and p, which we assume
have average exactly equal to the first-species reference mass
fraction of p.s (this is exactly true on average by (43)). The
diversity function is concave (for 2 or 3 species) so the average

sampled value, D. imp, Will be less than the reference
value, D, ref.

= exp (Hy,ref) [Theorem 1] (71)
= D, . [Diversity is the exponential of entropy]

(72)

O

Finally, we consider the sampled y-diversity. Because
entropy is only log-concave in dimensions 2 and 3,
we are only able to prove a consistent relationship
when we have these number of species. As shown in
Figure 6, however, even in higher dimensions we see
from numerical simulations that sampled populations
tend to underestimate D,. Figure 9 illustrates how
concavity of the diversity function leads to
underestimation.

Theorem 4 (Sampled y-diversity). If the sampled pop-
ulations are drawn uniformly from the reference
population (Assumption 1) and the number of species
is 2 or 3, then the average sampled y-diversity is less
than or equal to the reference y-diversity:

Dy, samp S Dy, ref - (73)

Proof. This proof is almost identical to that of
Theorem 2, except we use the fact that D is concave
in dimension 2 or 3. Because D(-) = exp (H(-)), or
equivalently H(-) = log(D(:)), concavity of D is
equivalent to log-concavity of H. As shown in
Alirezaei and Mathar (2018, Theorem 16), H is log-
concave if and only if the dimension (number of spe-
cies) is 2 or 3.



Assuming we have 2 or 3 species and thus concave
D, we compute

D, sump = Esop,[Dy,s] [Definition of D, samp] (74)

= Eop, [D(E,-Nps)i[ﬁs) l])} [Definition of D, ]

(75)

< D(Eqp, [Einyp,, [P,;]]) [Jensen’s inequality
and concavity of D] (76)
= D(Ej~p,[p;]) [Lemma 1] (77)
= D, res. [Definition of D, ref] (78)
(]

As we see from the above proofs, we now understand
the source of the over/under-estimation of the average
sampled mixing state index and diversity metrics that
we observed from simulations and experimental data
in Section 3. The consistent overestimation of D, is a
consequence of the exact averaging of H, (Theorem
1) combined with the convexity of the exponential
function (Theorem 3). The underestimation of D,
(and H,), on the other hand, is due to the concavity
of the (log-)entropy function (Theorems 2 and 4). By
the central limit theorem, all of these over/under-esti-
mations will decrease at a rate of 1/v/N as the num-
ber of sampled particles, N, increases.

5. Conclusions

Single-particle instruments necessarily use finite par-
ticle samples to determine population-level quantities,
with the sample size being determined by practical
considerations of data acquisition. In this study we
developed a method to determine confidence intervals
for a population-level quantity, the mixing-state index
1> that is determined from particle-level information.
We accomplished this by using model-generated par-
ticle populations as a reference, which were subse-
quentially  subsampled. =~ Both  numerical and
mathematical analyses revealed that finite particle
samples introduce a positive bias in the estimation of
the diversity metric D, (the average particle species
diversity), and a negative bias in D, (the bulk diver-
sity), which overall results in a positive bias in the
estimation of y. These results are consistent with the
measurements using the aerosol samples of the Ye
et al. (2018) study of Pittsburgh. The confidence inter-
val for y, not surprisingly, depends on the mixing
state itself.

A sample size of 1000 particles allows an estimate
of y within 30 percentage points, and 10,000 particles

AEROSOL SCIENCE AND TECHNOLOGY 1539

are needed to determine y within 10 percentage
points, for any mixing state. This approach could be
extended to the measurement of other population-
level quantities that are estimated based on particle
samples. Furthermore, it may be important in practice
to consider measurement error (not just undersam-
pling) when calculating y, or to extend y to include
species similarity (Leinster and Cobbold 2012) or
functional diversity (Scheiner et al. 2017).

Data availability

The output of the particle-resolved modeling scenario
library can be accessed at https://doi.org/10.13012/
B2IDB-2774261_V1.
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