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Abstract
The main contribution of this paper is to present a canonical choice of
a Hamiltonian theory corresponding to the theory of discrete Lagrangian
mechanics. We make use of Lagrange duality and follow a path parallel
to that used for construction of the Pontryagin principle in optimal control
theory. We use duality results regarding sensitivity and separability to show
the relationship between generating functions and symplectic integrators. We
also discuss connections to optimal control theory and numerical algorithms.
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Mathematics Subject Classification: 34A26, 49N15

1. Introduction

The theory of discrete Lagrangian mechanics and that of the corresponding variational
integrators is reasonably well developed (see [18] and references therein). There has, however,
been a lack of a corresponding Hamiltonian side in this discrete setting. In this paper we present
a particular canonical choice for the Hamiltonian analogue of discrete Lagrangian mechanics,
based on Lagrange duality and using a method analogous to that in optimal control theory.
In addition, from the optimization and duality theory it is simple to understand reciprocity,
symplecticity and momentum map preservation.

Having a Hamiltonian side for discrete mechanics is of interest for theoretical reasons, such
as the elucidation of the relationship between symplectic integrators, discrete-time optimal
control, and distributed network optimization, as well as practical reasons, such as the fact
that variational integrators for degenerate Lagrangian systems may be more easily derived on
the Hamiltonian side.

The Euler–Lagrange and Hamilton equations are equivalent when the Legendre transform
is a global diffeomorphism (that is, the systems are hyper-regular), an assumption that gives
some of the same power as the assumption of strong convexity in optimization. The relationship
between Lagrangian and Hamiltonian dynamics is of particular importance when the system
is not hyper-regular (that is, when it is degenerate) and so the two theories are not entirely
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equivalent. Examples of this occur in point vortex models of fluid flow and quasi-geostrophic
reduced models of atmospheric dynamics, and when deriving variational integrators for such
systems it is important to make the appropriate choice between Lagrangian and Hamiltonian
formulations [17].

There have been a number of other formulations of discrete Hamiltonian mechanics.
Direct approaches on the Hamiltonian side, where one discretizes the Hamiltonian and the
symplectic structure, are developed in [10] and developed and generalized much further in
[19]. In this paper we use an approach based on duality, and similar approaches are standard
in optimal control theory (see [1] for a standard treatment). Some of the applications of this
theory to generator functions and variational integrators are explored in [5].

When dealing with optimization and variational problems such as those arising in discrete
mechanics, there are two basic approaches that we can take. Either we assume convexity of our
functions, in which case we can globally minimize or maximize, or we assume smoothness,
in which case we can find stationary points locally. Here we choose to follow the second path,
as is more traditional and generally useful in mechanics. We will, however, write ‘min’ and
‘max’, with the understanding that in the context of mechanics they should be interpreted as
merely requiring local stationarity1.

In constructing the dual of optimization or variational problems we naturally obtain dual
variables. Depending on the problem these have many interpretations, including Lagrange
multipliers, canonical momenta, forces, pressures or prices. In this paper we will refer to them
either as momentum variables or Lagrange multipliers.

2. Discrete Hamiltonian mechanics

In this paper, we construct a Hamiltonian approach to discrete mechanics, motivated
significantly by the theory of convex duality.

Take a discrete Lagrangian function L : Q×Q → R. To approximate a given continuous
system, approximate the action

L(q(0), q(�t)) ≈
∫ �t

0
L(q(t), q̇(t)) dt (1)

on a solution trajectory q(t). The action is

S(q(·)) =
n−1∑
t=0

L(q(t), q(t + 1)) (2)

and rendering the action stationary gives the Euler–Lagrange equations

D2L(q(t − 1), q(t)) + D1L(q(t), q(t + 1)) = 0.

Here we use the notation Dif to refer to the derivative of f with respect to its ith argument.

Duality. The above construction of discrete mechanics is well known (see [11] and
[18] for historical references) and has been further developed in the context of numerical
integration algorithms which have important geometric properties, including symplecticity
and momentum-map preservation in the presence of symmetries.

Note that discrete Euler–Lagrange equations are simply the optimality conditions for an
unconstrained optimization problem. The major stepping-stone to construct a corresponding
Hamiltonian theory is to form the appropriate dual problem. This is not quite well defined,

1 It is important to remember that Hamilton’s principle is really the principle of stationary action, and not of minimum
action.
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however, as there is no canonical dual problem associated with an unconstrained optimization
problem. Indeed, even for constrained optimization problems, the dual problem one obtains
depends on the particular equations used to describe the constraint manifold. This concept is
well known in constrained optimization theory, and one can achieve significant efficiencies
in numerical algorithms by selecting the appropriate formulation of the problem, and hence
its dual. It is also possible to formulate dual problems by introducing artificial constraints,
which is necessary for unconstrained problems. As we shall see, this is key to constructing a
Hamiltonian version of discrete mechanics, and the choice of such constraints is very important
when one considers multi-symplectic extensions and algorithms. We first provide a very brief
review of Lagrange duality theory to guide us in our development. More details on convex
duality theory and its implications may be found in [2].

Lagrange duality. Suppose the functional f is convex and the function h is affine. We have a
constrained optimization problem given by

minimize f (x)

subject to h(x) = 0.
(3)

To construct the dual, one forms the Lagrangian (as the term is used in optimization)

K(x, p) = f (x) + pT h(x), (4)

and the Lagrange dual function g

g(p) = inf
x

K(x, p).

Then, subject to additional technical conditions called constraint qualifications, the optimal
value of

sup
p

g(p) (5)

is equal to the minimum of (3); this optimization is called the dual problem. Note that the
term Lagrangian in convex optimization is used to refer to the cost function augmented by the
addition Lagrange multiplier (4), not the usual Lagrangian that arises in mechanics.

Hamilton’s principle on the Hamiltonian side. To form a corresponding Hamiltonian theory,
we introduce additional variables and constraints to obtain the following optimization problem:

minimize S(q, r) =
n−1∑
t=0

L(q(t), r(t + 1))

subject to r(t) = q(t) for t = 1, . . . , n − 1

q(0) = r(0)

r(n) = q(n).

It is clear that this problem is identical to the original variational problem of Hamilton’s
problem and both problems have the same solution, and the variables r(1), . . . , r(n) are
redundant. Having augmented the system with these redundant variables, we now construct
the dual problem.

Taking Lagrange multipliers p(t), to construct the dual function we write the Lagrangian
(as the term is used in optimization)

K(q, r, p) =
n−1∑
t=0

L(q(t), r(t + 1)) +
n∑

t=1

p(t)T (q(t) − r(t)) (6)
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with respect to both r(t) and q(t). In this setting the Lagrange multipliers are known as the
canonical momenta. In doing so, we can perform the minimization with respect to r(t) first.
To do this, define the associated right Hamiltonian2

H +(q(t), p(t + 1)) = − min
r(t+1)

(L(q(t), r(t + 1)) − p(t + 1)T r(t + 1)).

Requiring stationarity with respect to variations in r(t) gives the right Legendre transform

p(t + 1) = D2L(q(t), r(t + 1)). (7)

It is therefore a consequence of strong duality that along the trajectory that extremizes the
action the Lagrange multiplier p satisfies the Legendre transform. The Lagrange dual function
is

g(p) = min
q,r

K(q, r, p)

= min
q

S(q, p) (8)

where

S(q, p) =
n−1∑
t=0

(p(t + 1)T q(t + 1) − H +(q(t), p(t + 1))). (9)

The dual problem is then to maximize g(p) with respect to p. The optimality conditions are
the right Hamilton equations

q(t + 1) = D2H
+(q(t), p(t + 1)) (10a)

p(t) = D1H
+(q(t), p(t + 1)). (10b)

The system of three equations given by the two Hamilton equations (10) together with
the Legendre transform (7) are recognizable as Pontryagin’s principle, familiar from optimal
control theory. In that setting they are usually formulated in terms of the pseudo-Hamiltonian
H(q, r, p), where q is the state, r is the control and p is the multiplier3.

Apart from minor sign changes, the Legendre transform also occurs as the Fenchel
transform, which for f : R

n → R is defined as

f ◦(p) = sup
x

(pT x − f (x)).

The function f ◦ is also called the conjugate function of f , which is essentially the Hamiltonian.
The Fenchel transform plays a central role in Fenchel duality theory [20].

The use of convex duality to derive the Legendre transform shows directly the motivation
for the definition of both the Legendre transform and the Hamiltonian. The dual problem is
called Hamilton’s principle on the Hamiltonian side; this is the problem of maximizing g(p)

given by (8). Of course, the approach of convex duality requires the strong assumption of
convexity on the action function, although it allows relaxation of smoothness assumptions
typically used. However, in order to relax the assumption of convexity, one may of course
follow the more usual route via the local theory of Lagrange multipliers [15], which essentially
is the spirit of the derivation above. In this case, the conditions for minimality of the action
simply become conditions for stationarity of the action. Naturally, the expressions for the

2 Note that in a differential-geometric formulation the momentum vector p is a one-form based at r, so the pseudo-
Hamiltonian is a well-defined function on Q×T ∗Q, whereas it is not so clear where the Hamiltonian H(q, p) should
live.
3 In optimal control the term Hamiltonian is used for the function H(q, r, p) = pr − L(r, q), which in mechanics
is known as the pseudo-Hamiltonian.
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Legendre transform are the same, but their interpretation is slightly different. Similarly,
one may relax both smoothness and convexity assumptions by following the approach of
non-smooth calculus taken by [4].

The important points are that the Hamiltonian arises via duality; the momentum variables
are Lagrange multipliers, and the Legendre transform is the map between primal and dual
variables that arises from the optimality conditions, i.e., the KKT conditions.

Left Hamiltonians. When rendering the augmented action (6) stationary with respect to
variations in q, r and p, we can instead choose to first vary q, which will give the left Legendre
transform and left Hamiltonian

p(t) = −D1L(q(t), r(t + 1))

H−(p(t), r(t + 1)) = −min
q

(p(t)T q(t) + L(q(t), r(t + 1)))

and the corresponding left Hamilton equations

q(t) = −D1H
−(p(t), q(t + 1))

p(t + 1) = −D2H
−(p(t), q(t + 1)).

Here we have replaced r(t) by q(t); of course, at optimality they are equal. We can complete the
picture by taking another Legendre transform of H− or H + to obtain a function R(p(t), p(t+1))

with the corresponding evolution equations. The four different functions can be summarized
as

with evolution equations[
p(t)

p(t + 1)

]
=

[−1 0
0 1

]
DL(q(t), q(t + 1))

[
p(t)

q(t + 1)

]
=

[
1 0
0 1

]
DH +(q(t), p(t + 1))

[
q(t)

p(t + 1)

]
=

[−1 0
0 −1

]
DH−(p(t), q(t + 1))

[
q(t)

q(t + 1)

]
=

[
1 0
0 −1

]
DR(p(t), p(t + 1)).

Continuous time mechanics. Here we very briefly consider continuous time mechanics to
show how the redundant constraints can also be used in this setting to obtain the Hamiltonian
side.

Let Q be a linear finite dimensional configuration space, with tangent bundle T Q. Given
a Lagrangian L : T Q → R, the action of a path q(t) in Q is

S(q) =
∫ T

0
L(q(t), q̇(t)) dt. (11)
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Requiring that the action be stationary with respect to variations in the trajectory yields the
familiar Euler–Lagrange equations. In the case when the Lagrangian function is convex, one
may use this approach to derive the Hamiltonian formulation of mechanics by expressing the
variational problem of finding stationary points of the action (11) as

minimize
∫ T

0
L(q(t), v(t)) dt

subject to q̇(t) = v(t) for all t ∈ [0, T ].

(12)

Here we would like to minimize over all v and all q with the given boundary conditions. The
Lagrangian (as the term is used in optimization) is

K(q, v, p) =
∫ T

0
(L(q(t), v(t)) + p(t)T (q̇(t) − v(t))) dt.

The corresponding Lagrange dual function is

g(p) = inf
q

inf
v

∫ T

0
(L(q(t), v(t)) + p(t)T (q̇(t) − v(t))) dt

= inf
q

∫ T

0
inf

v∈R
n∗(L(q(t), v) + p(t)T (q̇(t) − v)) dt

= inf
q

S(q, p),

where the dual action S(q, p) is

S(q, p) =
∫ T

0
(p(t)T q̇(t) − H(q(t), p(t))) dt. (13)

Here we have defined the Hamiltonian by

H(q, p) = inf
v∈R

n∗ L(q, v) − pT v;
and hence the optimal v(t) satisfies

D2L(q(t), v(t)) − p(t) = 0 for all t ∈ [0, T ].

Stationarity with respect to q and p gives the Hamilton equations[
q̇

ṗ

]
=

[
D2H(q, p)

−D1H(q, p)

]
=

[
0 1

−1 0

]
DH(q, p).

The Hamilton equations are exactly equivalent to Pontryagin’s minimum principle when the
Lagrangian is smooth and strongly convex.

3. Sensitivity and its implications

It is a well-known fact that the dual variables p of the Lagrange dual problem provide a
measure of the sensitivity of the primal optimization problem to changes in the constraints.
In this section, we show how this sensitivity property leads to reciprocity, symplecticity and
momentum maps for discrete mechanics. One may also deduce that standard continuous-time
notions of these properties by performing the analogous construction for continuous-time
mechanics.

Sensitivity. Consider the optimization problem

minimize f (x)

subject to hi(x) = ci
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with Lagrange multipliers added to give

max
p

min
x

(
f (x) + pT

i (hi(x) − ci)
)
.

If x∗(c), p∗(c) and f ∗(c) are optimal, then it is easy to show that

∂f ∗(c)
∂ci

= −p∗
i (c),

which is the statement of sensitivity in optimization.

Reciprocity. From the above we have

∂p∗
i (c)

∂cj

= −∂2f ∗(c)
∂cj ∂ci

and so we see that the matrix ∂p∗
i (c)/∂cj is thus symmetric, a fact that is termed reciprocity.

To apply sensitivity to variational mechanics, consider the value of the action on a solution
trajectory,

S∗(q0, qn) = S(q) if q is an optimal solution with q(0) = q0, q(n) = qn.

Taking p(0) and p(n) to be the Lagrange multipliers enforcing the constraints q(0) − q0 = 0
and qn − q(n) = 0, sensitivity shows that4

p(0) = −D1S
∗(q0, qn) p(n) = D2S

∗(q0, qn).

Then we have the usual form of reciprocity below:

∂p(i)

∂qj

= −∂p(j)

∂qi

.

Symplecticity. To see how sensitivity and reciprocity relate to symplecticity, consider the two
functions:

g : (q0, qn) �→ (−p0, pn)

f : (q0, p0) �→ (qn, pn).

The function g is thus given by g = DS∗; so Dg = D2S∗ is symmetric (which is reciprocity).
Furthermore, f is the flow map that takes initial conditions to final conditions, and we can
check5 that

(Df )T J (Df ) = J, J =
[

0 1
−1 0

]

which is the statement of symplecticity of the flow.
This derivation works for both discrete and continuous time, and for primal (Lagrangian)

and dual (Hamiltonian) formulations.

Generating functions. Recall that the set of symplectic maps f : T ∗Q → T ∗Q is equivalent
to the set of real valued functions F : T ∗Q → R. This can be seen by considering

d[f ∗(p1dq1) − p0dq0] = 0,

so there exists a F(q0, q1) such that on the graph of f

p1dq1 − p0dq0 = dF(q0, q1) = D1F(q0, q1)dq0 + D2F(q0, q1)dq1

4 In mechanics it is standard to derive these relations directly from the Euler–Lagrange equations (see, e.g., [16] or
[18]).
5 To prove that Dg = (Dg)T implies (Df )T J (Df ) = J requires either a straightforward, if tedious, calculation
in coordinates, or one can observe that 0 = d2S∗ = d(−pi

0dqi
0 + pi

1dqi
1) = dqi

0 ∧ dpi
0 − dqi

1 ∧ dpi
1 which is the

equivalent statement in differential-geometric notation.
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and so f is defined implicitly from F by

p0 = −D1F(q0, q1) p1 = D2F(q0, q1).

Here F is called a generating function of the first kind [9] and we can see that it is exactly a
discrete Lagrangian, with f being the corresponding evolution, as shown in [18]. There are
four types of classically recognized generating functions, based on the four coordinate choices
(q0, q1), (q0, p1), (p0, q1), and (p0, p1) for the graph of f .

These are exactly the same as the four functions L,H +,H− and R, and the generating
function equations are exactly the corresponding Hamilton equations. This implies that
all symplectic integrators can be derived from a discrete time Lagrangian or Hamiltonian.
Generating functions were amongst the first techniques used to construct symplectic integrators
(see, for example, [21], [3], [6] and [7]), and were also used in the analysis of symplectic
schemes, such as in [8].

Symmetries and momentum maps. Let G be a Lie group with Lie algebra g acting on Q. We
say that G is a symmetry of a Lagrangian if

L(q(t), q(t + 1)) = L(g · q(t), g · q(t + 1))

for all g ∈ G, or the equivalent infinitesimal statement

D1L(q(t), q(t + 1)) · ξ(q(t)) + D2L(q(t), q(t + 1)) · ξ(q(t + 1)) = 0

for all ξ ∈ g. This implies that the action S(q) is symmetric, and so too is S∗(q0, qn). We thus
have

D1S
∗(q0, qn) · ξ(q0) + D2S

∗(q0, qn) · ξ(qn) = 0

and using sensitivity gives Noether’s theorem of momentum conservation

p0 · ξ(q0) = pn · ξ(qn).

Variational integrators thus preserve momentum maps.

4. Separable optimization problems and Hamilton–Jacobi theory

The action sum (2) has the special property that it is the sum of functions whose dependence
on the optimization variables x(0), . . . , x(n) is local. This causes the optimization to be
separable. An important consequence of this is the associated Hamilton–Jacobi theory, where
the action sum is split into separate terms, and the optimal action is expressed in terms of the
optimal values of each of the terms.

To see this, consider the action evaluated on a trajectory as a function of two times and
two positions

S∗(t, qt , �, q�) = S(q),

where q is a solution satisfying q(t) = qt and q(�) = q�. For any m with t < m < � we have

S∗(t, qt , �, q�) = S∗(t, qt , m, q∗
m) + S∗(m, q∗

m, �, q�)

where q∗
m renders the right-hand side stationary. In the particular case that m = t + 1 and

� = n this is the discrete time Hamilton–Jacobi equation:

S∗(t, qt , n, qn) = L(qt , q
∗
t+1) + S∗(t + 1, q∗

t+1, n, qn),

where q∗
t+1 renders the right-hand side stationary. By taking the limit �t → 0 this recovers

the continuous time Hamilton–Jacobi equation:

−D1S
∗(t, qt , T , qT ) = H(q,−D2S

∗(t, qt , T , qT )).
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This equation can also be derived by realizing that the flow map f T −t : (qt , pt ) �→
(qT , pT ) is symplectic, and hence has a generating function S∗(t, qt , T , qT ), and then
computing the equation that describes the time evolution of S∗.

One may also construct a Hamilton–Jacobi theory for multisymplectic problems, again,
due to the separable structure of the action sum. The Hamiltonian is important to the Hamilton–
Jacobi theory, and one can recognize it as playing the same role as that of the conjugate function
in separable optimization problems.

5. Symplectic integrators

While classical generating function theory tells us that every symplectic integrator arises from
a discrete Lagrangian, it turns out that many well-known methods arise very naturally from
a variational formulation. These include Verlet, conservative Newmark and Runge–Kutta
methods (see [18] for details). The symplectic Runge–Kutta methods (identified by [12] and
[23]) have a particularly neat variational derivation, as shown by [22].

To derive numerical integrators using discrete Hamiltonians, it is important to recognize
that it is necessary for the discrete action sum (2) to approximate the continuous action (11)
[18, 11]. On the Hamiltonian side this means that (9) should approximate (13). In particular,
a right Hamiltonian should satisfy

H +(q0, p1) ≈ pT
1 q1 −

∫ �t

0
(p(t)T q̇(t) − H(q(t), p(t))) dt

As a simple example of this, consider the first-order approximation

H +(q0, p1) = pT
1 (q0 + �tD2H(q0, p1)) − �t

(
pT

1 D2H(q0, p1) − H(q0, p1)
)

= pT
1 q0 + �tH(q0, p1).

Computing the Hamilton equations (10) gives

q1 = D2H
+(q0, p1) = q0 + �tD2H(q0, p1)

p0 = D1H
+(q0, p1) = p1 + �tD1H(q0, p1).

In the special case H(q, p) = 1
2pT M−1p + V (q), the Hamilton equations become

q1 = q0 + �tM−1P1 p1 = p0 − �tDV (q)

and we recognize the first-order symplectic-Euler method [11]. Higher order methods result
from taking higher order approximations to the action.

Note that while the integrator resulting from the discrete Hamiltonian is symplectic, it
certainly will not preserve either the continuous-time Hamiltonian H(q, p) or the discrete-time
Hamiltonian H +(q0, p1) exactly, although both will be approximately conserved as dictated
by backward error analysis [11].

6. Conclusions

As we have seen above, augmenting with additional constraints and using Lagrange duality
theory provides a canonical choice of a Hamiltonian counterpart to discrete Lagrangian
mechanics. The dual nature of these formulations is familiar from discrete optimal control
theory and generating function theory, and provides a natural choice for constructing discrete
Hamiltonians and discrete Hamilton equations. In addition, the sensitivity analysis of
optimization theory provides a direct method for establishing symplecticity of the discrete
Hamilton system and for determining its momentum maps.
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The theory presented above extends immediately to a discrete multisymplectic setting,
where we now have a mesh of discrete variables rather than a line in time. The duality theory
extends naturally, but there are now more than two discrete Hamiltonians, as each element in
the mesh has one discrete Hamiltonian per node.

A simple application of multisymplectic theory is for solving elliptic systems, for example,
when solving for the equilibrium configuration of an elastic system. This problem has a natural
variational formulation, and one may perform the dual construction as in the hyperbolic case.
If one is solving this problem over a fixed domain with appropriate boundary conditions,
then the dual structure gives rise to a natural class of gradient algorithms via the dual-
decomposition. Both primal and dual variants of these algorithms are decentralized, and
proceed by alternately solving the primal and dual system to compute the gradient. On the
primal side, this corresponds to associating configuration variables with elements. In one
dimension, one associates momentum variables with nodes in between adjacent elements, and
the configuration of two adjacent elements is used to compute left and right momenta, which
are passed to the nodes. The nodes in turn update their configuration using these momenta.
The dual algorithm is similar; in this case nodes have a single associated momentum variable
and elements each have left and right configuration variables. Both of these algorithms result
from direct application of the gradient method, either to Hamilton’s principle or to the dual
variational problem, and the decentralized structure arises immediately from the separable
structure of the action. It is interesting to note also that a very similar decentralized gradient
algorithm is used in congestion control of networks [14].

Such algorithms become interesting in multisymplectic models, where one has an array of
elements over independent variables representing space-time. If the associated discretization
is an irregular mesh, then each element may be responsible for a different number of
momentum and configuration variables, depending on the local structure of the mesh. The
resulting algorithms are related to the asynchronous variational integrators described in [13].
Understanding the dual structure of the discrete mechanics here may also allow application to
distributed optimal control systems with large arrays of actuators and sensors.
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