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ABSTRACT
Chaotic mixing strategies produce high mixing rates in mi-

crofluidic channels and other applications. In prior numerical
and experimental work the variance of a tracer field in a chaotic
mixer has been observed to decay rapidly after an initial slower
transient. We relate this to the cutoff phenomenon observedin
finite Markov chains and provide numerical evidence to suggest
that chaotic mixing indeed exhibits cutoff. We provide results for
a herringbone passive microfluidic mixer and the Standard Map.

INTRODUCTION
The question of how chaotic advection mixes a passive

scalar function has attracted much research effort in recent years
[1]. The main issues in this field are: how to measure the thor-
oughness of the mixing, how the mixing process changes qual-
itatively and quantitatively when the diffusion is close tozero,
and how to enhance the overall mixing process by designing the
map which produces chaotic advection. Unfortunately, we have
only partial understanding for most of these topics. In spite of
the fact that the detailed mechanism of mixing is unclear, non-
trivial mixing processes have been observed in experiments[2]
and can be simulated by large-scale computations [3].

A widely observed phenomenon in the chaotic mixing pro-
cess when small diffusion exists is the two or three-stage transi-
tion [4–6]. The map does not mix the scalar function with a con-
stant rate in general. When the variance of the scalar function is
measured during the mixing process, one can in general observe
a relatively flat decay initially, followed by a super-exponential
change, and then finally it tends to an exponential decay. We are
interested in when these transitions happen, why they happen,
and how to predict the slope of the exponential region. A good
review and physical interpretation can be found in [7].

Thiffeault and Childress [4] study these properties for a
modified Arnold’s cat map. Analytical formulas are given to pre-
dict the transitions as well as the slopes. Because the linear part
of this map has an eigenvalue 2.618, which stretches very fast,
and the chaotic part is relatively small, the three phases are sep-
arated clearly. The same analytical procedure cannot be applied
to, for example, the Standard Map, although the only difference
between the Standard Map and the modified Arnold’s cat map is
in the linear part.

As for the exponential decay part, there is still debate about
whether the decay rate goes to zero in the zero diffusivity limit or
whether it tends to a constant independent of the diffusion [3,7].
Theoretical analysis shows both of these possibilities canoccur
for different chaotic flows [8].

Difficulties typically arise in studying the above problems
numerically, because the small diffusion usually means that fine
grids are required in the solution of the advection-diffusion equa-
tion or the simulation of the map. Some studies and numerical
results conclude that a proportional relation exists between the
stationary decay rate and the diffusion [9]. However, this is only
true for certain diffusion ranges.

Our goal in this paper is to relate the chaotic mixing process
to the well-known cutoff phenomenon in finite Markov Chain
studies (see [10] and references therein). We begin with a nu-
merical simulation of a chaotic mixing channel, measuring mix-
ing of two colored liquids by the color variance of channel cross-
sections. The simulation shows that when we increase the Péclet
number, the mixing trajectory presents a cutoff. The underlying
physical mechanism is then explained using advection of a sinu-
soidal function under the Baker’s Map. To support the chaotic
mixing channel example, a very high resolution numerical simu-
lation of the Standard Map is then presented to show that in the
near-zero diffusion limit it does present a cutoff.



BACKGROUND
The measure space and operators

We work on the probability space(X,A ,µ) for X a subset
of R

n. We takeS : X → X to be a transformation (or map) that
is non-singular and measurable. We chooseµ to be the Borel
measure. In the measure space(X,A ,µ) we define the following
operators.

Definition 1. (Perron-Frobenius operator) The Perron-
Frobenius operator P: L1(X) → L1(X) associated with S
satisfies

Z

A
(Pω)(x)µ(dx) =

Z

S−1(A)
ω(x)µ(dx) (1)

for everyω ∈ L1(X) and A∈ A .

The Perron-Frobenius operator is linear. Because of our choice
of measure space, the Perron-Frobenius operator can be inter-
preted as a map that evolves probability density functions.Also,
suppose that̄ω is an invariant measure ofS, so thatω̄(S−1(A)) =
ω̄(A) for all A∈ A . Then we havePω̄ = ω̄ (omittingx).

Definition 2. (Koopman operator) Let f ∈ L∞(X). The opera-
tor U : L∞(X)→ L∞(X) defined by U f(x) = f (S(x)) is called the
Koopman operator associated with S.

The Koopman operator is adjoint to Perron-Frobenius operator,
which we write asU = P∗.

In the measure space(X,A ,µ), whereµ is the Borel mea-
sure, letPS andUS be the Perron-Frobenius and the Koopman
operators of an invertible mapS. We have the following rela-
tions:

forward in time backward in time
probability density PS PS−1

scalar function US−1 = P∗
S−1 US = P∗

S

Our goal is to simulate how a scalar function is advected by a
chaotic map forward in time. From the above table, it is clearwe
should use the operatorUS−1. For a given initial functionf 0(x),
one has,f k+1 = US−1 f k, for all k.

Numerical Strategy
Numerically, an approximation ofUS−1 is used. For a map

S: X → X, we discretizeX into regular square grids with sizeh.
The grids are numbered asa1,a2, ..,an. We first define a map (an
observer)gn : f (x) 7→ fn such that

( fn)i = (gn( f (x)))i =
Z

ai

f (x)µ(dx), for i = 1 ton. (2)

This gn maps the scalar function we are interested into a finite
length vector inRn, and thus we only need a linear operatorBn :

R
n → R

n to approximateUS−1, and thus to evolve the function in
the reduced spaceRn. TheBn we use in our numerical simulation
is obtained in a very simple way: letxi = (x1i ,x2i) be the center
of grid ai , then define a matrixBn as,

(Bn)i j =

{

1
4 , if S(x1 j ± h

2,x2 j ± h
2) ∈ ai ,

0 , otherwise.
(3)

The matrixBn has only 4 non-zeros in each row. For a givenf 0,
we can thus approximate the evolution byf k+1

n = Bn f k
n .

This approach is similar to the lattice method [3, 11]. We
stress that there exist better approximations ofUS−1 which mini-
mize the difference betweenf k

n andgn( f k) [12] by applying op-
timal model reduction. However, our simple numerical strategy
allows us to go up to very largen and to simulate the system with
very small numerical diffusion. During the simulation, thema-
trix Bn is never explicitly formed and we need only store a length
n state vector, ensuring system evolution has cost of ordern.

Using the above numerical strategy, we can evolve a func-
tion or a probability distribution by the map with some smallnu-
merical diffusion. The effect of numerical diffusion is similar to
physical diffusion on large scales, but their behavior can be quite
different on small scales. To simulate the physical diffusion cor-
rectly, we need to simulate the map with higher resolution with
some additional physical diffusion added. The additional diffu-
sion can be added in either spatial or frequency domains. In the
spatial domain, we adopt the method of adding a smoothing step
used in [3],

f k+1
(p,q) = ∑

|r|,|s|≤2

C|r|C|s| f
k
(p,q) (4)

with C0 = 1/8,C1 = 1/4, andC2 = 3/16 and(p,q) is the 2-D
index of a grid. This creates a large scale diffusionD≈ h2, which
is several times larger than the numerical diffusion [3]. Weuse a
smoothing operatorMn and f k+1 = Mn( f k) to denote the above
smoothing step and definēBn = Mn◦Bn.

Alternatively, in frequency domain a two dimensional
FFT/IFFT with a wave-number dependent scaling can be ap-
plied to simulate physical diffusion. This procedure is denoted
by an operatorFn, f k+1 = Fn( f k) andB̂n = Fn◦Bn. Note that the
FFT/IFFT scheme is much more expensive whenn is large.

Notion of a cutoff
In some Markov Chains, certain probability distributions

converge to an equilibrium via a sharp transition, which becomes
sharper for larger chains. This phenomenon is referred to ascut-
off in the finite Markov chain literature [10]. Here we extend the
usual definition slightly to accommodate converge to non-zero
distance values.



To any finite setΩ and any pair of probability measuresω,
ω̄ on Ω we associate a real numberd(ω, ω̄) such that

d(ω, ω̄) ∈ [0,1] (5a)

d(ω, ω̄) = 0 if and only if ω̄ = ω (5b)

max
Ω,ω,ω̄

d(ω, ω̄) = Md. (5c)

Note thatd need not satisfy the triangle inequality and so is not
a metric.

Consider a sequence of finite probability spaces(Ωn) for
n = 1,2, . . .. We think ofn as the size of the space. Each space
is equipped with a probability measurēωn which we think of
as the unique invariant measure of a Markov chain onΩn. For
eachn we now take a sequence of probability measuresωk

n for
k = 0,1,2, . . . such that limk→∞ d(ωn, ω̄n) = 0. Theωk

n should
be thought of as an initial conditionω0

n and then iterates of the
distribution under the evolution of a Markov chain.

Definition 3 (Cutoff). Take a family(Ωn, ω̄n,(ωk
n)

∞
k=0)

∞
n=1 of

finite probability spacesΩn and probability measures̄ωn andωk
n.

This family presents a d-cutoff if there exists a sequence(tn)∞
n=1

of positive reals such that, for anyε ∈ (0,1),

lim
n→∞

d(ωkn
n , ω̄n) = m if kn > (1+ ε)tn (6a)

lim
n→∞

d(ωkn
n , ω̄n) = M if kn < (1− ε)tn (6b)

This definition is taken from [10] with the change thatmand
M are 0 andMd in the original. The reason for this modification
will be clear when we present the results of Standard Map simu-
lation.

The definition of cutoff implies that the change ofd(ωk
n, ω̄n)

from M to m happens ever more rapidly asn increases, but only
in relation to the cutoff timestn. We can think of this as rescaling
the each trajectory(ωk

n)
∞
k=0 in time bytn and seeing cutoff as the

limit of these rescaled trajectories to a step function. We give an
example of cutoff phenomenon:

Example 1. Random walk on an n-dimensional hypercube
(Diaconis [13]) A particle starts at the origin and moves to one
of its nearest neighbors (or stays fixed) with equal probability at
each step. The problem can be formulated as a Markov Chain
with 2n states and the invariant distribution̄ω is uniform. The
|ωk

n− ω̄|TV (Total Variation Distance) versus iteration plot with
different n is shown in Figure 1. ♦

How to recognize a cutoff?
To prove the existence of a cutoff is in general very hard,

relying on special features of the sequence of systems. In this
article we merely provide numerical evidence suggesting that
cutoffs occur. The way we determine whether a sequence of
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Figure 1. THE UPPER FIGURE SHOWS THE EVOLUTION OF A MEA-

SURE TO THE INVARIANT MEASURE FOR A RANDOM WALK ON

AN n-DIMENSIONAL HYPERCUBE. WHEN n INCREASES, THE DIS-

TANCE STAYS CLOSE TO 1 FOR LONGER BEFORE IT DROPS TO

ZERO. THE BOTTOM FIGURE HAS TRAJECTORIES RESCALED IN k
TO SHOW CUTOFF AS A LIMIT TO A STEP FUNCTION.

simulation results presents a cutoff or not is through the defi-
nition. We first define a cutoff timetn, usually the number of
iterations required for the trajectory indexed byn to pass through
(M⋆ +m⋆)/2, where⋆ indicates the operator used in the simula-
tion, and then all the trajectories are rescaled by theirtn on the
iteration axis. If the normalized plot shows the tendency tocon-
verge to the function:

β⋆∞(x) =

{

M⋆ , if x < 1,

m⋆ , otherwise,
(7)

then this suggests that the sequence of simulations presents a cut-
off. To determine this, we define the interpolating functions for



the trajectories in the normalized plots to beβ⋆n(x), wherex rep-
resents the normalized iteration, and then define the distance be-
tweenβ⋆n(x) andβ⋆∞(x) to be∆ℓ

⋆, given by

∆ℓ
⋆ =

Z ℓ

0
|β⋆∞(x)−β⋆n(x)|dx (8)

We calculate∆3
⋆ for all β⋆(x), and plot them versustn, thus indi-

cating whether this sequence of simulations is likely to present a
cutoff.

An important quantity in chaotic mixing is the variance of
the function, and in the study of cutoff phenomenon, total varia-
tion distance is commonly used. There is no difficulty to set the
distance functiond(ω, ω̄) to be the 2-norm as the following:

d(ωn, ω̄n) =

(

n

∑
i=1

(

(ωn)i

(ω̄n)i
−1

)2

(ω̄n)i

)1/2

. (9)

This corresponds to the study ofL2 cutoff in the cutoff terminol-
ogy.

It is clear that the maximal value of the 2-norm distance is∞,
so we need to setMd = ∞ (in stead ofMd = 1 for total variation
distance). In the original cutoff definition,(M,m) always equals
(Md,0), but in our examples we will setM to have a finite value
(0.5 in the mixing channel case and 1 in the Standard Map case)
which does not maximize the distance function.

THE MICROFLUIDIC MIXING CHANNEL
Microfluidic systems control and manipulate liquids in mi-

croliter or nanoliter amounts. One of the challenges in microflu-
idics is the design of mixing channels, whose objective is tothor-
oughly mix two or more different liquids. Passive mixers, such
as discussed in this paper, do not actively change system geom-
etry to mix the fluids. This reliance on fixed system design has
advantages in manufacturing simplicity and price.

Active mixing, while not investigated here, shows very
promising results by using components like micro-pumps to stir
the flow [14], and also allows the use of feedback strategies de-
veloped for boundary-controlled Navier-Stokes systems [15–19].

A microfluidic mixing channel typically has cross-section
dimensionℓ ∼ 100µm, and Reynolds number Re= Uℓ/ν is less
than 100 [20] (U is the average velocity of the liquid andν is the
kinematic viscosity of the fluid). Fluid flow on this scale is highly
laminar and the mixing of materials between streams is purely
diffusive. The dimensionless number that controls the length of
the channel required for mixing is the Péclet number (Pe=Uℓ/D
whereD is the molecular diffusivity). For a pressure-driven mix-
ing channel the mixing length can be expected to grow linearly
with Pe and is usually much more than 1cm. Hence various de-
signs are proposed to stir the flow inside the channel and produce
transverse velocities to enhance the mixing [20,21].

Stroock, et. al [20] proposed a staggered herringbone mixer
which is composed of two sequential regions of ridges; the di-
rection of asymmetry of the herringbones switches with respect
to the center-line of the channel from one region to the next.
The herringbone structure is fabricated with two steps of pho-
tolithography and is located on the floor of the poly channel.
Experiments show that the length of the channel required for
mixing grows only logarithmically with Pe. The goal of the
herringbone structure is to produce transverse flows, basically
one large and one small vortex, and we further optimize in the
structure [22] by using the techniques of topology optimization.
The optimized half-cycle structure is shown in Figure 2, where
(ℓx, ℓy, ℓz) = (0.06,0.01,0.02)cm. The same pattern repeats four
times in the half-cycle structure. One full-cycle is composed of
two half-cycle channels which arrange as in Strook’s design.

We stimulate the mixing process of the proposed mixing
channel by first solving the velocity field for one full-cycleof the
mixing channel, and then defining an inlet-outlet flow map by
integrating the streamlines. Once the flow map is obtained, we
can apply our numerical strategy to simulate the mixing process.
The actual mixing process happens in between the streamlines
and is the solution of an advection-diffusion equation. We ap-
proximate this complicated process by the simple model outlined
above, and lump all diffusion inside the mixing channel intoan
FFT/IFFT diffusion operatorFn. Thus the operator to perform
this simulation isB̂.

In Figure 3, the optimized mixing channel is used to perform
the simulation with different Pe. We adjust Pe by changing the
FFT/IFFT diffusivity between each full-cycle (0.12cm). The tra-
jectories have the same tendency as the experiment results in the
Figure 3(D) in [20]. Define mixing length (x90) as the channel
length required for the standard deviation to drop to 0.05 (shown
by a dashed line in figure 3). The mixing length grows linearly
with log(Pe), which also matches the experiments in [20].

Let n = Pe. Definetn as the number of iterations required
for each of the trajectories to pass through 0.25. The normalized
plot is shown in the first plot of Figure 4. One can see a cutoff
clearly forming. The cutoff time versus Pe trajectory is shown in
the second plot of Figure 4. Just likex90, the cutoff time grows
linearly with Pe. The∆3

B̂
versus Pe plot is shown in the last plot of

Figure 4. The decreasing trajectory implies that the normalized
trajectories is likely to form a cutoff.

Figure 5 shows cross-sectional plots of two of the simula-
tions in Figure 3, where Pe is 1.2× 106 and 1.2× 109, respec-
tively. The first four plots of each case show the cross-section at
the end of the 1st to the 4th cycles, and the last plot for each case
shows the cross-section at the end of the 9th cycle. From this
comparison one can clearly see how the chaotic mixing protocol
helps color mixing even when diffusion is very small.

More details about this simulation can be found in [22]. In
this article, we are more interested in relating the trajectories
shown in Figure 3 to the cutoff phenomenon. However, large
Pe means fine grids and thus many streamlines need to be cal-
culated. Further increasing Pe and observing a clearer cutoff is



Figure 2. THE OPTIMIZED CHANNEL STRUCTURE TO PRODUCE

ONE BIG AND ONE SMALL VORTEX.
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Figure 3. MICROFLUIDIC MIXING AS A FUNCTION OF CHANNEL

LENGTH, FOR VARYING Pe, USING THE OPTIMIZED HERRINGBONE

STRUCTURED CHANNEL. THE MIXING TRAJECTORIES STAYS AL-

MOST 0.5 FOR A LONGER DISTANCE WHEN PeIS LARGE.

prohibited by the computational expense. Hence in the following
two sections, we discuss two discrete chaotic maps and provide
analytical and numerical evidence of cutoffs in chaotic mixing.

THE SUPER-EXPONENTIAL MIXING CURVE
In this section we use a simple example to explain why we

expect to see the concave mixing trajectory in the beginningof a
chaotic mixing process. Consider the Baker’s map onT2:

S(x1,x2) =

{

(2x1,
1
2x2) mod 1, if 0 ≤ x1 < 1

2

(2x1,
1
2(x2 +1)) mod 1, if 1

2 ≤ x1 < 1

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k/tn (normalized iteration)

va
r(

f
k
)

Chaotic Mixing Channel

 

 
Pe = 1.20e+04
Pe = 1.20e+05
Pe = 1.20e+06
Pe = 1.20e+07
Pe = 1.20e+08

10
4

10
6

10
8

1

2

3

4

5

6

7

8

9

Pe
t n

(c
u
to

ff
ti
m

e)

Cutoff time versus n

10
4

10
5

10
6

10
7

10
8

10
9

0.12

0.14

0.16

0.18

0.2

0.22

0.24

∆

∆ versus 1/n

Pe
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with initial condition f 0(x) =
√

πcos(2πx2). The action of the
Koopman operator onf 0(x) is very simple: it doubles the fre-
quency of the cosine wave at each iteration, as shown in Fig-
ure 6. We further apply a diffusion operator with diffusivity D
after every iteration to make the process diffusive. Just like in
the mixing channel problem, we want to know how the variance
changes with iteration numberk. This problem is analytically
solvable:

f k(x) =
√

πe−4π2D22k
cos(2π2kx2) for k = 1,2, . . .

and the variance of( f k(x)) is var( f k(x)) = e−8π2D22k
, a doubly

exponential function ofk. We plot var( f k(x)) in Figure 7 with
differentD values. This figure shows that the set of trajectories
presents a cutoff with cutoff timetn ∼− log(D). The trajectories
we see in the mixing channel simulation have the same tendency
as the Baker’s Map simulation. In the next section we numeri-
cally simulate another discrete map, the Standard Map, to pro-
vide the additional numerical evidence of the cutoff in chaotic
maps.
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TION.

STANDARD MAP SIMULATION
We study the Standard Map onT2:

x′1 = x1 +x2 + εsin2πx1 (mod 1),

x′2 = x2 + εsin2πx1 (mod 1). (10)

This map is known to be chaotic for certain values ofε. Various
studies of how a point is advected by the map can be found, for
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Figure 7. VARIANCE EVOLUTION OF A FUNCTION ADVECTED BY

THE BAKER’S MAP, SHOWING CUTOFF.

example, in [23]. Here we mainly focus on how a scalar function
is evolved by the map with additional small diffusion. Because
this map is volume preserving, its invariant measure is uniform.
We always scale the mean and standard deviations off 0 to be
1. The Standard Map is known to have some non-chaotic region
whenε is not zero, so the distanced converges to a valuem 6= 0,
which is why Definition 3 of cutoff is slightly modified from that
in [10].

The evolution of the variance off k
n with n ranging from

25002 to 800002 usingBn andB̄n as the Koopman operators are
shown in the left of Figures 9 and 10. The tendency is clear:
as n becomes larger, the variance stays high (MB = MB̄ = 1)
for more iterations and then drops rapidly tomB = 0.4521 and
mB̄ = 0.4498, respectively—they do not drop to zero because
there are unmixed “islands”. The rapid dropping region alsobe-
comes slightly longer whenn increases. To see whether this evo-
lution presents a cutoff, we lettn be the time where each trajec-
tory passes through(M⋆ +m⋆)/2, where⋆ = {B, B̄}, and normal-
ize all the trajectories by rescalingtn to 1. The results are plotted
in the right of Figures 9 and 10. Although the normalized trajec-
tories are very similar, one can still see that whenn gets larger,
the trajectory becomes sharper. In the upper plot of Figure 11 we
plot tn versus 1/n on a logarithmic scale and we see two straight
lines. Note that for both cases, we haveD ∼ O(1/n). Hence this
plot shows that the cutoff time is inversely proportional log(D).
Just like we did in the mixing channel trajectories, we plot∆3

B
and∆3

B̄ versustn in the right of Figure 11, showing that whentn
increases, both∆3

B and∆3
B̄ decay slightly sub-linearly, but clearly

as n grows, ∆3
B and ∆3

B̄ decrease, which strongly suggests that
both sequences of Markov Chains present cutoffs.
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Figure 10. TOP: VARIANCE OF f k
n VERSUS ITERATION NUMBER

FOR THE STANDARD MAP SIMULATION WHEN A SMOOTHING STEP

IS ADDED AFTER EACH ITERATION. WE USE ε = 0.3, f 0 =
cos(2πx2), AND NUMBER OF GRID CELLS n VARIES FROM 25002

TO 800002. BOTTOM: RESCALED VERSION OF THE TOP PLOT, SO

THAT ALL TRAJECTORIES PASS THROUGH THE POINT (1,0.7260).

THE TWO SMALL PLOTS SHOW DETAILED VIEWS OF THE COR-

NERS.

CONCLUSION
We provide numerical evidence that mixing processes in a

number of fluid and chaotic map systems present cutoffs in the
sense of finite Markov Chains, in the limit of small diffusion.
This means that as the diffusion tends to zero, the time over
which the variance of an advected scalar function decreasessig-
nificantly tends to zero, relative to the onset time of the decrease.
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