NUMERICAL EVIDENCE FOR CUTOFFS IN CHAOTIC MICROFLUIDIC MIXING

Tzu-Chen Liang
Department of Aeronautics and Astronautics
Stanford University
Stanford, California 94305
Email: tzuchen@stanford.edu

ABSTRACT

Chaotic mixing strategies produce high mixing rates in mi-
crofluidic channels and other applications. In prior nueedri
and experimental work the variance of a tracer field in a ébaot
mixer has been observed to decay rapidly after an initiaveto
transient. We relate this to the cutoff phenomenon obseirved
finite Markov chains and provide numerical evidence to sagge
that chaotic mixing indeed exhibits cutoff. We provide festor
a herringbone passive microfluidic mixer and the Standarg.Ma

INTRODUCTION

The question of how chaotic advection mixes a passive
scalar function has attracted much research effort in tgaars
[1]. The main issues in this field are: how to measure the thor-

oughness of the mixing, how the mixing process changes qual-

itatively and quantitatively when the diffusion is closezero,
and how to enhance the overall mixing process by designiag th
map which produces chaotic advection. Unfortunately, wesha
only partial understanding for most of these topics. Inespit
the fact that the detailed mechanism of mixing is unclean-no
trivial mixing processes have been observed in experinm@hts
and can be simulated by large-scale computations [3].

A widely observed phenomenon in the chaotic mixing pro-
cess when small diffusion exists is the two or three-staayestr
tion [4-6]. The map does not mix the scalar function with a-con
stant rate in general. When the variance of the scalar fumitio
measured during the mixing process, one can in generalhaser
a relatively flat decay initially, followed by a super-exgotial
change, and then finally it tends to an exponential decay.réd/e a
interested in when these transitions happen, why they mappe
and how to predict the slope of the exponential region. A good
review and physical interpretation can be found in [7].
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Thiffeault and Childress [4] study these properties for a
modified Arnold’s cat map. Analytical formulas are given tep
dict the transitions as well as the slopes. Because ther lpsa
of this map has an eigenvalue 2.618, which stretches vety fas
and the chaotic part is relatively small, the three phasesep-
arated clearly. The same analytical procedure cannot deeepp
to, for example, the Standard Map, although the only diffeee
between the Standard Map and the modified Arnold’s cat map is
in the linear part.

As for the exponential decay part, there is still debate aibou
whether the decay rate goes to zero in the zero diffusivitjt lor
whether it tends to a constant independent of the diffus®i][
Theoretical analysis shows both of these possibilitiesazur
for different chaotic flows [8].

Difficulties typically arise in studying the above problems
numerically, because the small diffusion usually meansftha
grids are required in the solution of the advection-diifuséqua-
tion or the simulation of the map. Some studies and numerical
results conclude that a proportional relation exists betwine
stationary decay rate and the diffusion [9]. However, thisnly
true for certain diffusion ranges.

Our goal in this paper is to relate the chaotic mixing process
to the well-known cutoff phenomenon in finite Markov Chain
studies (see [10] and references therein). We begin with-a nu
merical simulation of a chaotic mixing channel, measuririg-m
ing of two colored liquids by the color variance of channelss-
sections. The simulation shows that when we increaseébkeP
number, the mixing trajectory presents a cutoff. The uryitegl
physical mechanism is then explained using advection ai@ si
soidal function under the Baker's Map. To support the cltaoti
mixing channel example, a very high resolution numeriaalsi
lation of the Standard Map is then presented to show thatein th
near-zero diffusion limit it does present a cutoff.



BACKGROUND
The measure space and operators

We work on the probability spadgX, 4,u) for X a subset
of R". We takeS: X — X to be a transformation (or map) that
is non-singular and measurable. We chopge be the Borel
measure. In the measure spake4, 1) we define the following
operators.

Definition 1. (Perron-Frobenius operator) The Perron-
Frobenius operator P. L1(X) — LY(X) associated with S
satisfies

[ Pe)cone = [ w(xu(dx (1)
A s1(A)

for everyw € L1(X) and Ac 4.

The Perron-Frobenius operator is linear. Because of ouceho
of measure space, the Perron-Frobenius operator can be inte
preted as a map that evolves probability density functiéso,
suppose thab is an invariant measure & so thato(S™1(A)) =
w(A) for all A€ 4. Then we havéw = w (omitting X).

Definition 2. (Koopman operator) Let f € L*(X). The opera-
torU : L*(X) — L*(X) defined by U {x) = f(S(x)) is called the
Koopman operator associated with S.

The Koopman operator is adjoint to Perron-Frobenius opgrat
which we write ag) = P*.

In the measure spad&, 4, ), wherep is the Borel mea-
sure, letPs andUg be the Perron-Frobenius and the Koopman
operators of an invertible mag We have the following rela-
tions:

backward in time
P5Ll
Us=P%

| forward in time
probability density| Ps
scalar function Ug1= Pé;l

Our goal is to simulate how a scalar function is advected by a
chaotic map forward in time. From the above table, it is clear
should use the operatbls-1. For a given initial functionf9(x),

one hasfk+! =Ug 1 fK, for all k.

Numerical Strategy

Numerically, an approximation djs 1 is used. For a map
S: X — X, we discretizeX into regular square grids with site
The grids are numbered ag, ay, .., a,. We first define a map (an
observerp, : f(x) — f, such that

.—/f

This g, maps the scalar function we are interested into a finite
length vector inR", and thus we only need a linear operasqr.

(fn)i = (on(f ), fori=1ton. (2)

R" — R" to approximatdJg 1, and thus to evolve the function in
the reduced spad®". TheB,, we use in our numerical simulation
is obtained in a very simple way: l&t = (xij, %) be the center
of grid &, then define a matriB, as,

1
(Bn)ij = {6‘

The matrixBy, has only 4 non-zeros in each row. For a giviéh
we can thus approximate the evolution # = B, fX.

This approach is similar to the lattice method [3, 11]. We
stress that there exist better approximationdf which mini-
mize the difference betweelf andgn(f¥) [12] by applying op-
timal model reduction. However, our simple numerical simgt
allows us to go up to very largeand to simulate the system with
very small numerical diffusion. During the simulation, tima-
trix By, is never explicitly formed and we need only store a length
n state vector, ensuring system evolution has cost of arder

Using the above numerical strategy, we can evolve a func-
tion or a probability distribution by the map with some snmalt
merical diffusion. The effect of numerical diffusion is siar to
physical diffusion on large scales, but their behavior calite
different on small scales. To simulate the physical difiasior-
rectly, we need to simulate the map with higher resolutioth wi
some additional physical diffusion added. The additionffilid
sion can be added in either spatial or frequency domaingen t
spatial domain, we adopt the method of adding a smoothimg ste
used in [3],

,if S(le :I:%,ij :t%) € q,

, otherwise

3)

fk+l

(4)

% CrCs fpa)

with Cp = 1/8,C; = 1/4, andC, = 3/16 and(p,q) is the 2-D
index of a grid. This creates a large scale diffudibs h?, which
is several times larger than the numerical diffusion [3]. W¥e a
smoothing operato¥, and f*1 = My (f¥) to denote the above
smoothing step and defifig = My 0 B;.

Alternatively, in frequency domain a two dimensional
FFT/IFFT with a wave-number dependent scaling can be ap-
plied to simulate physical diffusion. This procedure is ated
by an operatoF,, f*1 = F,(f¥) andB, = F,oBy. Note that the
FFT/IFFT scheme is much more expensive whéaslarge.

Notion of a cutoff

In some Markov Chains, certain probability distributions
converge to an equilibrium via a sharp transition, whichdmees
sharper for larger chains. This phenomenon is referred toas
off in the finite Markov chain literature [10]. Here we extend the
usual definition slightly to accommodate converge to nai-ze
distance values.



To any finite seQ and any pair of probability measures Random walk on an n-dimensional hypercube

wonQ we associate a real numhifw, w) such that 14 ‘ ‘ — =100
---n=200
12y o on— 1880’
d(w,®) € [0,1] (5a) o 1 = 2000
d(w,w) =0ifand only ifw=w (5b)
maxd(w, w) = Mg. 5¢c
Q,w,()f) ((A),(.O) d ( ) EO.B
3
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Note thatd need not satisfy the triangle inequality and so is nt
a metric.

Consider a sequence of finite probability spat@g) for
n=12.... We think ofn as the size of the space. Each spac
is equipped with a probability measuea which we think of

as the unique invariant measure of a Markov chairgn For o0 10‘00 ‘

30 B

‘~

2000 00

eachn we now take a sequence of probability measuokgor k (iteration)
- i ) — k
k=0,12,... such th_at _Imnﬂ‘” d(%’%h) = 0. Thewn should Random walk on an n-dimensional hypercube
be thought of as an initial conditiom;, and then iterates of the 1.4 ‘ ; ; ‘ ‘
distribution under the evolution of a Markov chain. e
_ 1.2} == n =400
Definition 3 (Cutoff). ~ Take a family(Qu, @n, (6)g_o)5; Of o 1 =3000

finite probability space€, and probability measuras, andwk. 10006
This family presents a d-cutoff if there exists a sequéhg_,

of positive reals such that, for areye (0,1), £ 0.8 ]
=
. Kn . EOB? )
r!lm d(wy", n) =mifky > (1+¢€)ty (6a)
lim d(afy,n) = Mifky < (1€}t 60) Y ’

This definition is taken from [10] with the change timaand
M are 0 andVq in the original. The reason for this modification
will be clear when we present the results of Standard Map-sirr
lation.

The definition of cutoff implies that the changedto, w,)
from M to m happens ever more rapidly asncreases, but only
in relation to the cutoff timef,. We can think of this as rescaling
the each trajectoryuh)fzo in time byt, and seeing cutoff as the
limit of these rescaled trajectories to a step function. \We gn
example of cutoff phenomenon:

Example 1. Random walk on an n-dimensional hypercube
(Diaconis [13]) A particle starts at the origin and moves toeo

of its nearest neighbors (or stays fixed) with equal prolighst
each step. The problem can be formulated as a Markov Chain
with 2" states and the invariant distributiow is uniform. The

|k — |ty (Total Variation Distance) versus iteration plot with
different n is shown in Figure 1. %

How to recognize a cutoff?

To prove the existence of a cutoff is in general very hard,
relying on special features of the sequence of systems.isn th
article we merely provide numerical evidence suggestirag th

0
0 0.5

il S i
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Figure 1. THE UPPER FIGURE SHOWS THE EVOLUTION OF A MEA-
SURE TO THE INVARIANT MEASURE FOR A RANDOM WALK ON
AN N-DIMENSIONAL HYPERCUBE. WHEN N INCREASES, THE DIS-
TANCE STAYS CLOSE TO 1 FOR LONGER BEFORE IT DROPS TO
ZERO. THE BOTTOM FIGURE HAS TRAJECTORIES RESCALED IN K
TO SHOW CUTOFF AS A LIMIT TO A STEP FUNCTION.

simulation results presents a cutoff or not is through thie de
nition. We first define a cutoff timé&,, usually the number of
iterations required for the trajectory indexedrbto pass through
(M, +m,)/2, wherex indicates the operator used in the simula-
tion, and then all the trajectories are rescaled by thein the
iteration axis. If the normalized plot shows the tendencgdo-
verge to the function:

M,

m,

then this suggests that the sequence of simulations psssent-

S x< 1,
, otherwise

Bro (X) (7)

cutoffs occur. The way we determine whether a sequence of off. To determine this, we define the interpolating functidar



the trajectories in the normalized plots tofhe(x), wherex rep-
resents the normalized iteration, and then define the distbe-
tweenB,, (x) andB,., (x) to beAL, given by

14
8= [ 1Bun 09 =B (9 ®)

We calculater? for all B, (x), and plot them versus, thus indi-
cating whether this sequence of simulations is likely tspre: a
cutoff.

An important quantity in chaotic mixing is the variance of
the function, and in the study of cutoff phenomenon, totailara
tion distance is commonly used. There is no difficulty to ket t
distance functiom(w, w) to be the 2-norm as the following:

N ) 1/2
d(m@)(é( 1) @n)i) .

This corresponds to the study lof cutoff in the cutoff terminol-
ogy.

Itis clear that the maximal value of the 2-norm distance,is
so we need to séfly = o« (in stead ofMy = 1 for total variation
distance). In the original cutoff definitioiM, m) always equals
(Mg, 0), but in our examples we will séfl to have a finite value

(on)i
(6n)i

(9)

(0.5 in the mixing channel case and 1 in the Standard Map case)

which does not maximize the distance function.

THE MICROFLUIDIC MIXING CHANNEL

Microfluidic systems control and manipulate liquids in mi-
croliter or nanoliter amounts. One of the challenges in afiar
idics is the design of mixing channels, whose objective ihto-
oughly mix two or more different liquids. Passive mixersgisu
as discussed in this paper, do not actively change system-geo
etry to mix the fluids. This reliance on fixed system design has
advantages in manufacturing simplicity and price.

Active mixing, while not investigated here, shows very
promising results by using components like micro-pumpgito s
the flow [14], and also allows the use of feedback strategies d
veloped for boundary-controlled Navier-Stokes systerfs19].

A microfluidic mixing channel typically has cross-section
dimension¢ ~ 10Qum and Reynolds number ReU//v is less
than 100 [20] is the average velocity of the liquid ards the
kinematic viscosity of the fluid). Fluid flow on this scale ighly
laminar and the mixing of materials between streams is purel
diffusive. The dimensionless number that controls the tieiod
the channel required for mixing is thé&let number (Pe U¢/D
whereD is the molecular diffusivity). For a pressure-driven mix-
ing channel the mixing length can be expected to grow liyearl
with Pe and is usually much more than 1cm. Hence various de-
signs are proposed to stir the flow inside the channel andipeod
transverse velocities to enhance the mixing [20, 21].

Stroock, et. al [20] proposed a staggered herringbone mixer
which is composed of two sequential regions of ridges; the di
rection of asymmetry of the herringbones switches with eesp
to the center-line of the channel from one region to the next.
The herringbone structure is fabricated with two steps af-ph
tolithography and is located on the floor of the poly channel.
Experiments show that the length of the channel required for
mixing grows only logarithmically with Pe. The goal of the
herringbone structure is to produce transverse flows, aifsic
one large and one small vortex, and we further optimize in the
structure [22] by using the techniques of topology optiriaa
The optimized half-cycle structure is shown in Figure 2, wehe
(¢x,2y,47) = (0.06,0.01,0.02) cm. The same pattern repeats four
times in the half-cycle structure. One full-cycle is compo®f
two half-cycle channels which arrange as in Strook’s design

We stimulate the mixing process of the proposed mixing
channel by first solving the velocity field for one full-cyadéthe
mixing channel, and then defining an inlet-outlet flow map by
integrating the streamlines. Once the flow map is obtained, w
can apply our numerical strategy to simulate the mixing essc
The actual mixing process happens in between the streanline
and is the solution of an advection-diffusion equation. e a
proximate this complicated process by the simple modeirad|
above, and lump all diffusion inside the mixing channel iato
FFT/IFFT diffusion operatoF,. Thus the operator to perform
this simulation isB.

In Figure 3, the optimized mixing channel is used to perform
the simulation with different Pe. We adjust Pe by changirg th
FFT/IFFT diffusivity between each full-cycle (2 cm). The tra-
jectories have the same tendency as the experiment rastiis i
Figure 3(D) in [20]. Define mixing lengthx§g) as the channel
length required for the standard deviation to drop.@bQ'shown
by a dashed line in figure 3). The mixing length grows linearly
with log(Pe), which also matches the experiments in [20].

Let n = Pe. Definet, as the number of iterations required
for each of the trajectories to pass througk3 The normalized
plot is shown in the first plot of Figure 4. One can see a cutoff
clearly forming. The cutoff time versus Pe trajectory iswhan
the second plot of Figure 4. Just likgy, the cutoff time grows
linearly with Pe. The.'x?é versus Pe plot is shown in the last plot of
Figure 4. The decreasing trajectory implies that the nazedl
trajectories is likely to form a cutoff.

Figure 5 shows cross-sectional plots of two of the simula-
tions in Figure 3, where Pe is2x 10° and 12 x 10°, respec-
tively. The first four plots of each case show the cross-sacit
the end of the 1st to the 4th cycles, and the last plot for east c
shows the cross-section at the end of the 9th cycle. From this
comparison one can clearly see how the chaotic mixing pobtoc
helps color mixing even when diffusion is very small.

More details about this simulation can be found in [22]. In
this article, we are more interested in relating the trajees
shown in Figure 3 to the cutoff phenomenon. However, large
Pe means fine grids and thus many streamlines need to be cal-
culated. Further increasing Pe and observing a cleareff ésito



Figure 2. THE OPTIMIZED CHANNEL STRUCTURE TO PRODUCE

ONE BIG AND ONE SMALL VORTEX.
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Figure 3. MICROFLUIDIC MIXING AS A FUNCTION OF CHANNEL
LENGTH, FOR VARYING P€ USING THE OPTIMIZED HERRINGBONE
STRUCTURED CHANNEL. THE MIXING TRAJECTORIES STAYS AL-

Chage of Peclet Number

——Pe = 1.20e+04

MOST 0.5 FOR A LONGER DISTANCE WHEN PelS LARGE.

prohibited by the computational expense. Hence in theviatig
two sections, we discuss two discrete chaotic maps andg®ovi
analytical and numerical evidence of cutoffs in chaoticinmgx

THE SUPER-EXPONENTIAL MIXING CURVE

In this section we use a simple example to explain why we
expect to see the concave mixing trajectory in the beginofray
chaotic mixing process. Consider the Baker's magén

S(lexz)

(ZX]_7 %Xz) mod 1

(2x,3(%+1)mod 1 if 1<x <1

ifo<x <3

Chaotic Mixing Channel

——Pe = 1.20e+04
- ==-Pe = 1.20e+05
== Pe = 1.20e+06
¢ Pe = 1.20e+07H
* Pe = 1.20e408

k/t, (normalized iteration)

Cutoff time versus n A versus 1/n

ta (cutoff time)
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Figure 4. TOP: NORMALIZED TRAJECTORIES OF THE MICROFLU-
IDIC MIXING CHANNEL. BOTTOM LEFT: NEAR LINEAR RELATION BE-
TWEEN CUTOFF TIME t, AND Pe BOTTOM RIGHT: A"é AS A FUNC-

TION OF Pe THE DECREASE OF Ag WITH t; SUGGESTS A CUTOFE.

with initial condition f%(x) = y/Ticog2mx;). The action of the
Koopman operator ori®(x) is very simple: it doubles the fre-
quency of the cosine wave at each iteration, as shown in Fig-
ure 6. We further apply a diffusion operator with diffusivid
after every iteration to make the process diffusive. Jikst in

the mixing channel problem, we want to know how the variance
changes with iteration numbér This problem is analytically
solvable:

fK(x) = /T 4P cog21*%,) for k= 1,2, ...

and the variance off(x)) is var f<(x)) = e 802 a doubly
exponential function ok. We plot var f&(x)) in Figure 7 with
differentD values. This figure shows that the set of trajectories
presents a cutoff with cutoff timg ~ —log(D). The trajectories
we see in the mixing channel simulation have the same tegdenc
as the Baker's Map simulation. In the next section we numeri-
cally simulate another discrete map, the Standard Map,de pr
vide the additional numerical evidence of the cutoff in dimo
maps.



Figure 5. CHANNEL CROSS-SECTIONS AT THE END OF CYCLES
1, 2, 3, 4, 9 (TOP TO BOTTOM) FOR Pe= 1.2 x 1(P (LEFT) AND
1.2 x 10° (RIGHT).

Figure 6. THE FIRST THREE ITERATIONS OF A FUNCTION 0 =
COS(ZTIXz) ADVECTED BY THE BAKER'S MAP. IT SIMPLY DOUBLES
THE FREQUENCY OF THE COSINE FUNCTION IN THE Xz DIREC-
TION.

STANDARD MAP SIMULATION
We study the Standard Map art:

X; = X1 + X2 +€Sin2rx; (mod 1),
X5 = X2 +€Sin 2x; (mod ). (10)

This map is known to be chaotic for certain valueg o¥/arious

Baker’s Map Cutoff

|wiwiwiwiw)
[T (]
e
|eslesle]enlen)
55750
—_——0 O
BENO0S
T

k (iteration

Nas3

Figure 7. VARIANCE EVOLUTION OF A FUNCTION ADVECTED BY
THE BAKER'S MAP, SHOWING CUTOFF.

example, in [23]. Here we mainly focus on how a scalar fumctio

is evolved by the map with additional small diffusion. Besau
this map is volume preserving, its invariant measure isounif

We always scale the mean and standard deviatiorid 6 be

1. The Standard Map is known to have some non-chaotic region
whene is not zero, so the distanckeconverges to a valua # 0,
which is why Definition 3 of cutoff is slightly modified from #t

in [10].

The evolution of the variance oifr‘,< with n ranging from
250F to 80006 usingB, andB, as the Koopman operators are
shown in the left of Figures 9 and 10. The tendency is clear:
asn becomes larger, the variance stays higlg (= Mg = 1)
for more iterations and then drops rapidlyrtg = 0.4521 and
mg = 0.4498, respectively—they do not drop to zero because
there are unmixed “islands”. The rapid dropping region &lso
comes slightly longer whemincreases. To see whether this evo-
lution presents a cutoff, we It be the time where each trajec-
tory passes througtM, +m,)/2, wherex = {B, B}, and normal-
ize all the trajectories by rescalimgto 1. The results are plotted
in the right of Figures 9 and 10. Although the normalizeddta|
tories are very similar, one can still see that wimegets larger,
the trajectory becomes sharper. In the upper plot of Figlingel
plott, versus ¥non a logarithmic scale and we see two straight
lines. Note that for both cases, we haye- O(1/n). Hence this
plot shows that the cutoff time is inversely proportionaj(ID).
Just like we did in the mixing channel trajectories, we mét
andAg— versug, in the right of Figure 11, showing that whén
increases, both3 andA? decay slightly sub-linearly, but clearly
asn grows, A3 and A% decrease, which strongly suggests that

studies of how a point is advected by the map can be found, for both sequences of Markov Chains present cutoffs.



Simulation of Standard Map with extra smoothing steps

Figure 8. THE FIRST EIGHT ITERATIONS OF f¥ wHEN f0 =
COS21Xp) IS ADVECTED BY THE STANDARD MAP WTIH € = 0.3

AND n =500

Simulation of Standard Map
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Simulation of Standard Map with extra smoothing steps

& — 1 =2500° ||
== -n=50002
‘== = 100002
0.9r ¢ n=20000%H
* p=40000%
o pn =800002
0.8
=
Z 07t
=
0.6r
0.5
0.4 i i i i i
0 0.5 1 1.5 2 25 3

k/t, (normalized iteration)

Figure 10. TOP: VARIANCE OF fX VERSUS ITERATION NUMBER
FOR THE STANDARD MAP SIMULATION WHEN A SMOOTHING STEP
IS ADDED AFTER EACH ITERATION. WE USE € = 0.3, f0 =
COS(21X;), AND NUMBER OF GRID CELLS N VARIES FROM 2500
TO 8000¢F. BOTTOM: RESCALED VERSION OF THE TOP PLOT, SO
THAT ALL TRAJECTORIES PASS THROUGH THE POINT (1,0.7260).
THE TWO SMALL PLOTS SHOW DETAILED VIEWS OF THE COR-
NERS.

CONCLUSION

We provide numerical evidence that mixing processes in a
number of fluid and chaotic map systems present cutoffs in the
sense of finite Markov Chains, in the limit of small diffusion
This means that as the diffusion tends to zero, the time over
which the variance of an advected scalar function decreages

k/t, (normalized iteration)

Figure 9. TOP: VARIANCE OF fX VERSUS ITERATION NUMBER FOR
THE STANDARD MAP. WE USE € = 0.3, f® = cog2mxz), AND NUM-
BER OF GRID CELLS N VARIES FROM 2500 TO 8000F. BOTTOM:
RESCALED VERSION OF THE TOP PLOT, SO THAT ALL TRAJECTO-
RIES PASS THROUGH THE POINT (1,0.7260). THE TWO SMALL
PLOTS SHOW DETAILED VIEWS OF THE CORNERS.
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