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ABSTRACT 
 
Computational competencies such as the use of modeling and simulation tools are a new core literacy 
that students in Materials Science and Engineering must develop. To develop this literacy among our 
students, the Department of Materials Science and Engineering at the University of Illinois at Urbana-
Champaign is synthesizing computational tools and skills across the core curriculum. In this paper, we 
describe the collaborative process for changing courses and curriculum, describe the outcome of these 
reforms, and provide evidence that these reforms have enhanced student learning. 
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INTRODUCTION AND BACKGROUND 
 

As the use of simulations, big data, and 
numerical methods increases, the engineers of 
the future will increasingly be expected to 
possess computational competencies to not only 
perform well on the job, but to even understand 
the complex systems that govern the problems in 
their disciplines1-4. Computational competencies 
such as programming and the use of modeling 

and simulation tools are becoming core forms of 
literacy for most engineers on par with 
mathematics and the engineering sciences1-3,5,6. 
The 2011 White House Materials Genome 
Initiative has created a particular imperative for 
computational competencies in Materials 
Science and Engineering, creating a demand for 
students who can engage in the computer-aided 
design of materials7.  
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Meeting this new demand for computational 
competencies is not straightforward—simply 
adding new skills and content independent of the 
traditional content is not viable in already packed 
curricula. To add these new competencies, we 
must either teach a smaller technical core to 
create space or find ways to synergize 
computational instruction with instruction in 
traditional content so that learning comput-
ational competencies accelerates learning of 
traditional content and vice versa1. Fortunately, 
other work suggests that integrating the use of 
modeling and simulation tools into instruction 
can foster deeper understanding of complex 
engineering concepts and problems2,8,9. In 
particular, such tools are useful for helping 
students understand microscopic or abstract 
phenomena, such as those found throughout a 
materials curriculum10.  
 
The Department of Materials Science and 
Engineering (MatSE) at the University of Illinois 
at Urbana-Champaign is synthesizing comput-
ational tools and skills across the curriculum. 
Over two years using a collaborative course-
development approach, a team of six faculty 
(one tenured professor and five assistant 
professors) have integrated training in 
computational competencies across five courses 
(MSE 201 – Phases and Phase Relations, MSE 
206 – Mechanics for MatSE, MSE 304 – 
Electronic Properties of Materials, MSE 406 – 
Thermal and Mechanical Behavior of Materials, 
MSE 498AF – Computational MatSE: course 
syllabi and other resources are publicly available 
at http://bit.ly/25OzbzG or may be requested 
from the authors). In this paper, we first describe 
the process for creating this curriculum revision 
and then describe the teaching methods and 
assignments of the revised courses. We conclude 

by presenting evidence for the effectiveness of 
this reform effort by presenting both 
examination data and student survey data.  
 
 
APPROACH TO COURSE AND 
CURRICULAR REFORM 
 
The College of Engineering’s Strategic 
Instructional Initiatives Program (SIIP) was 
created to transform and revitalize core 
engineering courses11-13. Over the past three 
years, the program has catalyzed innovation in 
most departments and large-enrollment, core 
courses in the college. Inspired by the work of 
Henderson et al.14-17,  SIIP was designed to focus 
on creating collaborative teaching environments 
that enabled faculty to iteratively and sustainably 
innovate instruction11. This environment was 
created by organizing faculty into Communities 
of Practice (CoPs) that would choose what 
innovations to pursue and evaluate their efforts 
to create those innovations18. A CoP creates a 
community to collaboratively explore a domain 
of knowledge to support the development of 
practice19,20. In this case, the MatSE faculty are 
the community and the implementation and 
evaluation of computational competency 
curriculum is the practice. A CoP is an 
organizational structure that effectively spreads 
knowledge, decreases the learning curve for 
novices, minimizes reenactments of failures, and 
promotes creativity19,20. The use of a CoP is 
promoting buy-in for course reforms, facilitating 
the continued use of developed resources when 
instructors change. (Table 1 shows how multiple 
course instructors were used across semesters in 
some courses.).

 
 

Table 1.  List of which faculty taught which courses each semester 
 

 Fall 2013 Spring 2014 Fall 2014 Spring 2015 
MSE 201 Leal Kilian Leal Kilian 
MSE 206  Trinkle  Krogstad 
MSE 304  (Weaver)  Schleife 
MSE 406 Trinkle  Trinkle  
MSE 498 Ferguson  Ferguson  

http://bit.ly/25OzbzG
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The MatSE CoP is composed of one tenured and 
five tenure-track faculty who meet on a weekly 
basis to discuss course administration, data 
collection, and future plans. The goal of these 
meetings is to develop a common set of 
resources, policies, teaching methods, and 
learning objectives (described in “Pedagogical 
Reforms in Courses”) across the courses to 
facilitate students’ computational competencies 
and technical content knowledge across the 
targeted course sequence. The use of common 
learning objectives, exam questions, and 
teaching methods additionally enables 
longitudinal studies of whether reforms are 
improving student learning. 
 
The revisions to the MatSE undergraduate 
curriculum were guided by two curriculum and 
course reform aims: (1) integrating comput-
ational materials modeling in sophomore and 
junior-level core courses and (2) developing a 
capstone senior materials modeling elective. 
 
The integration of computational materials with 
technical content took place in MSE 201, MSE 
206, MSE 304, and MSE 406, each of which has 
60-100+ students enrolled each semester. 
Together, these courses span three broad areas of 
materials science: mechanics, thermodynamics, 
and electronic properties. The longitudinal 
integration of computational modules across the 
sophomore and junior years was intended to 
reinforce student awareness of computation, 
build confidence in using computational tools, 
and cement the idea of computation as the "third 
pillar" of science alongside experiment and 
theory. Accordingly, we expected that this 
integration would (a) make abstract theoretical 
concepts more accessible, (b) promote active 

learning and hands-on engagement, and (c) 
develop student competency in computational 
materials science software tools. 
 
The second aim of this effort was to develop a 
new senior-year computational materials science 
elective MSE 498. The course was conceived as 
an integrated computational materials science 
and engineering capstone design course to tie 
together students’ experiences in the other 
courses.  In this course, students solve a 
materials engineering design problem at 
multiple length and time scales using a diversity 
of software packages and computational tools, 
gaining broad experience and confidence in 
industrially relevant MatSE software packages 
and a first-hand appreciation for the power and 
limitations of computational methods. 
 
Team members have committed to recording and 
hosting all computational modules, lectures, and 
course forums online to facilitate access and 
dissemination of these materials. 
 
 
PEDAGOGICAL REFORMS IN COURSES 
 
Aside from incorporating computation across 
the curriculum, course reforms also focused on 
integrating evidence-based instructional 
practices into the courses21-23. Pedagogical 
reforms focused on integrating classroom 
response systems (i>clickers), tablets for 
presenting content, online homework for rapid 
feedback, and discussion to promote deeper 
thinking and learning. Table 2 shows which 
courses implemented which instructional 
practices.

 
Table 2.  List of which reforms were implemented in each course. 

 
 i>clickers Tablets Computation Online 

Homework 
Discussion 
Sections 

MSE 201 X X X   
MSE 206 X X X X X 
MSE 304 X X X X  
MSE 406 X X X X X 
MSE 498   X   
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All of the required courses (i.e., 201, 206, 304, 
406) used i>clicker for electronic polling of 
students during lectures to facilitate problem 
solving and active learning21,22. In the case of 
201, i>clickers were used during lecture for 
active learning, and as a replacement for paper 
quizzes at the end of class. In 206 and 406, 
i>clickers replaced out-of-class reading quizzes 
with in-class problem solving and active 
learning using “think-pair-share.” In 304, 
i>clickers were used during lecture for active 
learning, for testing students’ understanding of 
the material that was presented in the previous 
class, and, on occasion, for in-class student 
problem solving. 304 also used pre-lecture 
questions before each class to evaluate student 
knowledge of the topic and to encourage 
students to study the reading material. In 206 and 
406, some i>clicker questions were repurposed 
for randomized multiple-choice exam questions. 
As all course lectures were both recorded and 
slides posted online after, the content was 
available for student review following lectures. 
 
All of the required courses used tablet devices to 
project lecture slides along with handwritten live 
problem solving. The lecture slides were 
prepared with different amounts of typed 
content: 206 and 406 had the largest amount of 
computer typed content, with handwritten 
content comprising live problem solving based 
on i>clicker questions. At the other end, 201 
used more handwritten notes à la an electronic 
white board. 304 was in between with slides that 
mixed computer-typed with hand-written 
content, and the tablet was used to 
develop/explain graphs and derive equations. In 
all cases, final annotated slides were posted for 
student access, as well as full lecture capture: 
video of projected slides and lecture audio. 
 
Half of the homework sets in MSE 304 and all 
of the homework sets in 206 and 406 were 
replaced by online homework, that allow 
submission of numerical answers to questions 
that were based on randomized input numbers 
for each student. Students had multiple tries to 
answer each question correctly and received 
feedback immediately upon entering an answer. 
Students were encouraged to solve each problem 

symbolically first and only insert the input 
numbers in the last step to obtain the final 
(numerical) answer, along with the correct units. 
MSE 206 used material from Pearson 
“Mastering Engineering” while both 304 and 
406 relied on faculty generated homework 
assignments. 
 
Two of the courses (206 and 406) used 
discussion sections for group learning. In both 
classes, multiple 50-inute discussion sections 
were created to ensure class sizes of 40 or fewer, 
with at least two teaching assistants in the room 
for a group/TA ratio of 5. Each class used groups 
of four, with random group creation each week 
for 206, and persistent groups created using 
Comprehensive Assessment of Team Member 
Effectiveness (CATME)24,25 for 406. Each 
discussion section was given a single long 
“Engineering Design” or “Engineering 
Analysis” problem based on the topics from the 
past week to apply to a real-world problem in a 
group setting. The TAs assisted with questions 
about how to approach problems, and to ensure 
that groups were working together. Grading for 
the discussions was done on a group basis by 
randomly selecting one group solution for each 
group. The grade for that solution was given to 
the entire group; the grading is based primarily 
on “effort.” Since the questions were complex 
and multipart, as long as students were able to 
show reasoning towards the answer and 
application of engineering principles, they 
received full credit, even in cases where their 
solution was only partial. As the TAs engaged 
with groups in their efforts, most groups 
received full credit for their participation. 
 
 
DESCRIPTION OF COMPUTATIONAL 
TOOLS AND MODULES 
 
The computational modules we have developed 
target four prime areas of computational 
materials science at different length scales using 
popular software packages: (i) density functional 
theory (DFT) with Quantum Espresso26, (ii) 
molecular dynamics (MD) with LAMMPS27 and 
Gromacs28, (iii) finite element method (FEM) 
modeling with OOF229, and (iv) thermodynamic 
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calculation of phase diagrams (CALPHAD) 
using Thermo-Calc30. By longitudinal 
integration of the modules into the core 
undergraduate curriculum, students will be 
repeatedly exposed to computational content 
over their academic trajectory at increasing 
levels of difficulty and complexity, ultimately 
preparing them for a capstone senior integrated 
computational materials engineering experience.  
 
Each class has 2-3 computational modules 
associated with it.  The current basic structure of 
a module is as follows:  First, the subject, 
background, and tools of the module are 
introduced during a class lecture.  Then, the 
module is given as a homework assignment, 
which students are expected to complete over the 
course of 1-2 weeks, with the aid of a dedicated 
computational TA, who holds 2-4 sessions of 
office hours in a computer lab that is accessible 
24/7, in which the required software has been 
installed.  
 
In Table 3 and the sections below, we briefly 
describe the particular modules developed, and 
their deployment in the target courses.  The 
modules are described in order of increasing 
complexity as the students would experience 
them progressing through the curriculum. 
 
Matlab 
 
Beam Design.  Students in MSE 206 used 
Matlab to numerically determine the bending 
moment of differently-shaped beams in order to 
predict the most appropriate geometry with the 
goal of minimizing the stress a beam 
experienced under load. 
 

Density Functional Theory (DFT) 
 

Si crystal. Using the Quantum Espresso software 
with a GUI provided by nanohub.org31, students 
in MSE 201 were asked to compute the 
equilibrium lattice constants of silicon for three 
different crystal structures using plane wave 
self-consistent field (PWSCF) calculations.  
Building on this module, students in MSE 304 
and MSE 498 were asked to calculate the bulk 
modulus of silicon from pressure perturbations 
to the lattice constant and to calculate and 
visualize the band structure of silicon and 
compare the computed band gap property with 
experiment.  As another extension, students in 
MSE 498 were asked to perform geometry 
relaxation and energy convergence with respect 
to the plane wave cutoff and k-point sampling, 
and explore the effect of different exchange 
correlation functionals and bound electron 
pseudopotentials. 
 
Molecular Dynamics (MD) 
 

Properties of Al.  Students in MSE 406 used the 
LAMMPS software package to investigate the 
movement of a dislocation through a solid block 
of aluminum.  They used the stress-strain curve 
to predict the Peierls stress of a dislocation, and 
the Ovito software package to visualize the 
movement and the change in stress-strain over 
the course of the simulation.  As an extension, 
students in MSE 498 also predicted the Young’s 
Modulus, and used both pieces of information to 
parameterize a finite element simulation, 
demonstrating the construction of an Integrated 
Computational Materials and Engineering 
(ICME) bridge from one level of simulation to 
the next.

 
Table 3.  List of which computational modules were deployed in each course. 

 
 DFT MD FEM CALPHAD Matlab 
MSE 201 X   X  
MSE 206   X  X 
MSE 304 X     
MSE 406  X X   
MSE 498 X X X X X 
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Nonequilibrium Folding.  Students in MSE 498 
used the Gromacs software package to perform 
a nonequilibrium pulling simulation of the 
unfolding of a ß-hairpin protein and to estimate 
the work required for the unfolding to occur. 
 
Finite Element Method (FEM) 
 
Temperature effects on strain.  Students in MSE 
206 used the OOF2 software package on 
nanohub.org to investigate the effects of 
geometry on a system of steel pins holding a 
dog-bone-shaped aluminum sample. Students 
solved the coupled heat flux and force balance 
equations over a finite element mesh to compute 
the temperature and stress fields over the strip 
and predict its deflection. They then compared 
the stress patterns in systems with differently-
shaped pins.  As an extension, students in MSE 
498 used Matlab to develop their own 
implementation of finite element software to 
solve the one-dimensional heat equation. 
 
Nanocomposites. Students in MSE 406 used the 
OOF2 software package to explore the effects of 
fibers on strain and bulk modulus in a composite.  
They solved the force balance equations over a 
finite element mesh, in which applied strains 
were perpendicular and parallel to the direction 
of fibers along a composite.  They investigated 
the effects of changing the Young’s modulus of 
the fibers and of the matrix and visualized the 
resulting stress distribution. 
 
Stress Field of a Crack. Students in MSE 406 
used the OOF2 software package to explore the 
stress distribution around a crack tip.  They 
solved the force balance equations over a finite 
element mesh for systems of a narrow and blunt 
crack and visualized the results.  As a first 
extension, students in MSE 406 compared the 
results of the OOF2 simulation with the results 
obtained from performing a LAMMPS 
molecular dynamics simulation of crack 
propagation in aluminum and visualizing the 
dynamic stress distribution using Ovito.  This 
module demonstrated the strengths and 
weaknesses of the two different software 
packages to the students.  As a second extension, 
students in MSE 498 used the stress field at the 

tip of the crack to determine whether or not crack 
propagation would occur. 
 
Calculation of Phase Diagrams (CALPHAD) 
 
Ag-Sn-Cu phase diagram.  Students in MSE 201 
used the Thermo-Calc software package to 
compute the T − x phase diagram for each of the 
binary alloys and then computed the ternary 
phase diagram qualitatively by hand, as a 
demonstration of the design of an alloy for 
soldering applications. 
 
Steel phase diagram and design. Students in 
MSE 498 used the Thermo-Calc software 
package to compute the T − x phase diagram for 
a Fe-C carbon steel, and used this diagram to 
design an equilibrium microstructure with 
desired materials properties, computed the 
maximum operating temperature of their steel as 
a function of composition, and predicted the 
equilibrium fractions of pearlite and pro-
eutectoid α-ferrite / cementite for eutectoid, 
hypoeutectoid, and hypereutectoid steels. 
Secondly, students in MSE 498 computed the 
ternary phase diagram for a Fe-C-Cr martensitic 
stainless steel, and determined an appropriate 
level of case hardening by surface carburization 
to trade-off competing constraints of hardness, 
toughness, and melting point to design a case 
hardened steel optimized for a particular 
application. 
 
Capstone Integrated Computational 
Materials Engineering (ICME) Elective 
 
MSE 498 AF: Computational Materials Science 
and Engineering is a new course introduced into 
the MatSE curriculum in Fall 2013 as the 
department's first dedicated Computational 
Materials Science and Engineering (CMSE) 
course offering. This course was revamped as a 
capstone Integrated Computational Materials 
Engineering (ICME) course that ties together in 
a single senior year elective the range of 
computational tools embedded into the 
sophomore and junior core courses, and 
stressing the idea of linking together 
computational predictive tools at a hierarchy of 
length and time scales. The course meets twice a 
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week for 90 minutes in a computer lab to provide 
students with hands-on experience with the 
software, and is organized into five units: (a) 
bash/Matlab, (b) density functional theory 
(DFT) using Quantum Espresso, (c) molecular 
dynamics (MD) using LAMMPS, (d) finite 
element method (FEM) using OOF2, and (e) 
calculation of phase diagrams (CALPHAD) 
using Thermo-Calc. Each unit teaches students 
the theoretical underpinnings of the method-
ology, trains them to operate the software 
through a worked example, and finally tests their 
ability to apply their skills to use the software to 
solve a materials analysis or design project. 
Assessment is based on multiple-choice quizzes 
on the theory and algorithms, and individual 
projects to display competence with the software 
itself. This structure provides students with an 
immersive computational experience that equips 
both experimentalists and theorists with the 
skills to deploy computational software 
packages as practical tools to tackle materials 
science problems. This model also enhances 
intrinsic motivation by providing autonomy, 
purpose, and competency as computational 
materials engineers, and was very positively 
received by the students, with high reported 
satisfaction with the course. Video captured 
lectures and course materials were hosted online, 
and made available for free public viewing and 
download at nanohub.org,  (https://nanohub.org/ 
resources/22124). 
 
 
EVALUATION OF IMPACT OF 
CURRICULUM CHANGES 
 
The impact of the curriculum changes is being 
evaluated by tracking student performance on 
exams and students’ perceptions of the 
usefulness of computational tools and their 
comfort using them. 
 
Student performance on examinations 
 
In this section, we present data on the impact of 
the curriculum changes on students’ exam 
scores. We focus only on MSE 201 and 206 
because these two courses were the only ones 
taught by at least two different members of the 

CoP and had similar enough exams between 
semesters to facilitate valid comparisons of 
student performance across semesters. 
Performance on the examinations between 
semesters was compared using a Classical Test 
Theory approach32,33. 
 
From Classical Test Theory, we can estimate the 
quality of the examination by measuring its 
reliability with Cronbach’s α34 and measuring 
the difficulty and discrimination of each item in 
the examination35,36. Cronbach’s α for 
dichotomously scored test items (i.e., items are 
scored 1 for correct, 0 for incorrect) is given in 
Eq. 1, where K is the number of exam items, 𝑃𝑖 
is the proportion of students that scored 1 on item 
𝑖, 𝑄𝑖 = 1 − 𝑃𝑖, and 𝜎𝑥2 is the variance of all test 
scores. 

𝛼 = 𝐾
𝐾 − 1(1 −

∑ 𝑃𝑖𝑄𝑖𝐾
𝑖=1
𝜎𝑥2

) 

         (1) 
 

Cronbach’s α provides an estimate for the 
likelihood that a student would receive the same 
score if they took the same examination twice. 
Coefficients of α range from 0 to 1 with 0 being 
a perfectly unreliable test and 1 being a perfectly 
reliable test. A Cronbach α of 0.6 is considered 
acceptable for classroom assessments such as 
examinations and a Cronbach above 0.8 is 
acceptable for rigorous research studies33,37. If an 
item is removed from the examination, then 
Cronbach’s α should always decrease. If 
removing an item causes Cronbach’s α to 
increase, then there is evidence that the item does 
not measure the same construct as the rest of the 
examination and should be removed from the 
examination. 
 
To determine whether an examination provides 
a valid assessment of student knowledge, we 
should see a range of difficulty in examination 
items and all items should positively 
discriminate between strong and weak 
students37. Difficulty is measured as the 
percentage of students who answered an item 
correctly (0 is an impossible item and 1 a trivial 
item)33. Discrimination is the point-biserial 
(Pearson) correlation coefficient between 
students answering an individual item correctly 
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and their overall score on the examination33. All 
discrimination coefficients should be positive, 
with values greater than 0.2 being particularly 
desirable37. 
 
MSE 206 Final Examinations 
 
For MSE 206, final examination data was 
collected from the Spring 2014 and Spring 2015 
semesters. Both examinations had 45 multiple-
choice items (questions), of which 31 items 
(68%) were identical between semesters except 
for changes in the numbers used for calculations 
(i.e., the same figures and calculations could be 
used to solve the problem). Of these 31 items, 25 
items (56%) were perfectly identical between 
semesters. For this analysis, all items were 
scored dichotomously (assigned a 0 for wrong, 1 
for correct) so that a maximum score is 45 
points.  
 
Descriptive statistics (N for sample size, µ for 
mean, σ for standard deviation, and α for 
Cronbach’s α) for both examinations are 
presented in Table 4. During Spring 2014, 118 
students took the final examination and 102 
students took the final examination during 
Spring 2015. Both examinations had excellent 
reliability with each Cronbach α above 0.85, 
making the results reliable enough for research 
purposes. Both examinations had questions that 
spanned a wide range of difficulties with an 
average difficulty of 0.75. All items had 
acceptable (positive) discrimination with at least 
40 items per examination having discrimination 
above 0.2.  
 
For all comparisons of performance between 
semesters, we used a 2-tailed t-test with a p-
value of 0.05 as the threshold for significance 
and rejecting the null hypothesis. If a difference 
between course offerings is described as 
significant, it should be interpreted as p < 0.05. 
Effect sizes were measured using Cohen’s d 
(𝑑 = µ1−µ0

𝜎 ) as is appropriate for comparing 
mean performance between two populations. We 
use the following thresholds for effect sizes: 
Cohen’s d less than 0.4 is a small effect size, 
Cohen’s d between 0.4 and 0.6 is a moderate 

effect size, Cohen’s d above 0.6 is a large effect 
size. 
 
Using all examination items, we found that 
students performed significantly better (p<0.01) 
in Spring 2015 than in Spring 2014 with a 
moderate effect size (d = 0.44). 
 
To make sure that the difference in performance 
was not an artifact of differences in performance 
on the non-identical items, we repeated the 
above analysis on only the 25 perfectly identical 
items between semesters. Note that Cronbach’s 
α and discrimination coefficients are test 
dependent, changing when the selection of items 
is changed. Descriptive statistics of this subtest 
are presented in Table 5. With only these 25 
items, the Cronbach α of both exams remained 
excellent (>0.80), making the results reliable 
enough for research purposes. Both 
examinations had questions that spanned a wide 
range of difficulties with an average difficulty of 
0.77. All items had acceptable (positive) 
discrimination with at least 23 items per 
examination having discrimination above 0.2. 
 
Using only the perfectly identical examination 
items, we found that students still performed 
significantly better (p<0.01) in Spring 2015 than 
in Spring 2014 with a moderate effect size (d = 
0.50). 
 
MSE 201 Final Examinations 
 
For MSE 201, final examination data was 
collected from the Fall 2013 and Fall 2014 
semesters. Both examinations had 17 items 
(questions), of which 14 items were written to 
test the same concepts. For this analysis, all 
items were scored with a minimum score of 0 
and maximum score of 1. We present only an 
analysis of those items that were intended to test 
the same conceptual content, so a maximum 
score is 14 points.  
 
Descriptive statistics for both examinations are 
presented in Table 6. During Fall 2013, 48 
students took the final examination and 57 
students took the final examination during Fall 
2014.     Both    examinations    had     excellent 
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Table 4.    MSE 206 students’ scores on all exam questions by semester 

 Population Mean Standard 
Deviation 

Cronbach α Difficulty 
Range 

Discrimination 
Range 

SP14 118 32.3 0.63 0.88 0.18-0.98 0.08-0.65 
SP15 102 35.3 0.62 0.86 0.49-0.99 0.05-0.62 

 

Table 5.   MSE 206 students’ scores on all exam questions that were identical between semesters 

 Population Mean Standard 
Deviation 

Cronbach α Difficulty 
Range 

Discrimination 
Range 

SP14 118 18.3 0.37 0.80 0.23-0.98 0.10-0.69 
SP15 102 20.3 0.37 0.80 0.49-0.99 0.14-0.65 

 

Table 6.    MSE 201 students’ scores on all exam questions by semester 

 Population Mean Standard 
Deviation 

Cronbach α Difficulty 
Range 

Discrimination 
Range 

FA13 48 12.07 0.22 0.80 0.55-1.00 0.43-0.78 
FA14 57 12.95 0.23 0.89 0.85-0.97 0.04-0.88 

 

Table 7.    MSE 206 students’ scores on all computationally oriented exam questions by semester 

 Population Mean Standard 
Deviation 

Cronbach α Difficulty 
Range 

Discrimination 
Range 

SP14 118 3.6 0.11 0.59 0.44-0.92 0.54-0.76 
SP15 102 3.9 0.11 0.54 0.54-0.99 0.18-0.76 

 

Table 7.    MSE 201 students’ scores on all computationally oriented exam questions by semester 

 Population Mean Standard 
Deviation 

Cronbach α Difficulty 
Range 

Discrimination 
Range 

SP14 48 2.7 0.06 0.53 0.77-0.90 0.60-0.90 
SP15 57 2.8 0.04 0.26 0.86-0.88 0.34-0.89 

 
 
 
reliability with each Cronbach α above 0.8, 
making the results reliable enough for research 
purposes. Both examinations had questions that 
spanned a wide range of difficulties, but students 
were more likely to get each question right than 
wrong. All items had acceptable (positive) 
discrimination with all but 1 item having 
discrimination above 0.2.  
 
We found that students performed significantly 
better (p = 0.02) in Fall 2014 than in Fall 2013 
with a moderate effect size (d = 0.55). 
 

Student performance on computationally 
related questions 
 

A core goal of the evaluation was to determine 
whether adding computational modules 
improved students’ understanding of core 
content. To measure this effect, we repeated the 
above analysis examining only those items that 
assess students’ knowledge of content covered 
by the computational modules in each of the 
courses. 
 
In MSE 206, five items pertained directly to the 
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content covered by the computational modules. 
Descriptive statistics of this subtest are presented 
in Table 7. With only these 5 items, the 
Cronbach α of both subtests were close to the 
level needed for classroom assessments (~0.60), 
making the results less reliable than desired. 
Both subtests had questions that spanned a 
moderate range of difficulties, ranging from 
moderate to easy. All items had acceptable 
(positive) discrimination with all but one item 
having discrimination above 0.2. 
 
Using only the items that covered content related 
to the computation modules, we found that 
students performed significantly better (p=0.03) 
in Spring 2015 than in Spring 2014 with a small 
effect size (d = 0.30). 
 
In MSE 201, three items pertained directly to the 
content covered by the computational modules. 
Descriptive statistics of this subtest are presented 
in Table 7. With only these three items, the 
Cronbach α of these exams were lower than the 
level needed for classroom assessments (~0.60), 
making the results less reliable than desired. 
Both subtests had questions that spanned only a 
small range of difficulties, ranging from 
moderate to easy. All items had acceptable 
(positive) discrimination with all items having 
discrimination above 0.2. 
 
Using only the items that covered content related 
to the computation modules, we found no 
significant difference (p=0.14) in performance 
between semesters. 
 
Discussion of student learning outcomes 
 
Results from MSE 201 and 206 suggest that the 
combination of pedagogical changes and 
addition of computational modules has 
improved students’ learning outcomes in MSE 
201 and 206. The reform efforts revealed 
significant improvements in exam scores with 
moderate effect sizes. According to Classical 
Test Theory analysis, the exams in these courses 
were excellent exams that provided reliable and 
valid measurements of students’ learning, 
strengthening the claim that course reforms 
improved student learning. These improvements 
are robust across courses, minimizing the 
likelihood that the changes are dependent on 

changes in instructors38. The improvements in 
student performance cannot be explained by 
students’ access to previous exam questions 
either as the improvements in students’ learning 
is robust across identical and non-identical exam 
items. 
 
It is not clear from the data whether the 
improvement in students’ learning was caused 
primarily by the pedagogical changes or the 
addition of computation modules. The subtests 
of computation questions were insufficiently 
reliable to draw strong conclusions. The data 
suggests that the computation modules may play 
a role in improving student learning, but the 
results are not robust across courses. At 
minimum, though, the addition of the 
computation modules did not undermine or 
hinder students’ learning of the core disciplinary 
content. Critically, students were able to learn 
more content (i.e., students learned both 
computation modules and the traditional 
content) because of the reforms. 
 
Student survey data 
 
To study the impact of our curriculum change on 
students’ attitudes toward computation, we 
administered surveys to measure students’ 
attitudes and competency beliefs before and after 
the curriculum change. 
 
Students’ perceptions of the value of 
computational tools 
 
To measure students’ perceptions of the value of 
computational tools, we administered the same 
survey question in MSE 201, 206, 304, and 406. 
In total, 397 students took the survey before the 
curriculum change and 486 students took the 
survey after the curriculum change. Students 
were asked two, 5-point Likert scale items. 
 

“I think computational materials science 
skills are important for my post-graduation 
career”  
(5 - Strongly Agree to 1 - Strongly 
Disagree) 
 
“I would like to use computation in my 
MatSE classes…” 
(5- Much More to 1 - Much Less)
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Table 8.    Students’ responses to survey questions “I think computational materials science skills are 
important for my post-graduation career” (5 - Strongly Agree to 1 - Strongly Disagree), “I would like 

to use computation in my MatSE classes…” (5- Much More to 1 - Much Less). 

 Important Skill More Computation 
Mean rating before 4.15 3.93 
Mean rating after 4.20 3.83 
t-test p-value 0.46 0.13 

 
 

 
Figure 1.    Distribution of students’ responses to survey questions in Table 8 

 
 
Students’ responses to these two survey 
questions are shown in Table 8 and Figure 1. 
Comparisons between students’ Likert scale 
ratings were performed using a t-test. These 
results show that the curriculum revisions had no 
significant impact on students’ perception of the 
importance of computational skills or their 
desire for more computation in their MatSE 
classes. 
 
Students’ sense of ability with computational 
abilities 
 
To measure students’ sense of ability or 
competence with computational abilities, we 
asked students to rate their level of comfort with 
performing specific calculations using specific 
computation tools. Each calculation and tool was 
chosen to reflect the calculations and tools of 
each course. For MSE 201, we asked students 
(N=100 before the change and 196 after the 
change) to rate their comfort with “calculating a 
eutectic point with CALPHAD.” For MSE 206, 
we asked students (N=94 before the change, 96 
after the change), to rate their comfort with 
“calculating beam-bending with FEM.” For 

MSE 304, we asked students (N=101 before the 
change, 99 after the change) to rate their comfort 
with “calculating band structure with DFT.” 
Students rated their comfort using a 5-point 
Likert scale (5 – Very comfortable, 1 – Very 
Uncomfortable). 
 
Students' responses to these survey questions are 
shown in Table 9 and Figure 2. Comparisons 
between students’ Likert scale ratings were 
performed using a t-test. These results show that 
the curriculum revisions had a significant, 
positive impact on students’ beliefs that they 
could use the computation tools related to their 
course content. 
 
Discussion of student attitudes 
 
The surveys reveal that adding instruction on 
computational tools does not by itself improve 
students’ perceptions of the usefulness of 
computation or their desire to learn more about 
computational tools. The lack of change has two 
possible explanations. First, students’ 
perceptions may not have changed because 
students frequently perceive that what they do in 
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Table 9.    Students’ ratings of their comfort with various computational tools used in MSE 201 
(CALPHAD), MSE 206 (FEM), MSE 304 (DFT). 

 Comfort with 
CALPHAD 

Comfort 
with FEM 

Comfort 
with DFT 

Mean rating before 1.03 1.19 1.35 
Mean rating after 2.86 1.96 3.69 
t-test p-value <0.01 <0.01 <0.01 

 
 

 

 
Figure 2.    Distribution of students’ comfort with various computational tools 

 

 
the classroom and in school is somewhat 
disconnected from what they will do in their 
careers. For example, while the faculty have 
first-hand experience with the importance of 
computational tools in Materials Science, 
students, lacking this experience, must simply 
trust what their instructors say. Consequently, 
students’ responses to these questions may 
simply reflect their general attitudes about the 
relevance and importance of what they are 
learning in the classroom. Alternatively, 
students’ responses to these survey questions 
may simply reflect affirmation bias. Without a 
strong pre-existing belief about the importance 
of computation, the students’ may have 

answered with affirming responses simply to 
make the survey writer happy. 
 
While there is not any evidence of a change in 
students’ attitudes, there is strong evidence that 
adding instruction on computational tools 
positively changes students’ beliefs that they can 
use computational tools. 
 
 
CONCLUSIONS 
 
The integration of computational modules across 
a Materials Science and Engineering curriculum 
provides a compelling avenue for increasing 
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students’ learning of core concepts and 
improving their comfort with using those 
computational tools. The use of a Community of 
Practice in particular facilitates communication 
about how to implement this new curriculum and 
support students’ learning.  This model is 
sustainable as new instructors buy into teaching 
courses using the tools and resources that other 
instructors have developed.  
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