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Abstract— We provide an exact, continuous time extension to
previous work in anticorrelated stochastic process simulation
that was performed in an approximate, discrete time setting.
These methods reduce the variance of continuous time Monte
Carlo for Markov jump process systems. We rigorously con-
struct antithetic Poisson processes and analytically prove the
negative correlation between pairs. We then show how these
anticorrelated Poisson processes can be used to drive Markov
jump processes via a random time change representation.
Finally, we provide a sufficient condition for variance reduction
in the jump process context as well as demonstrate a simple
example.

I. INTRODUCTION

In the broad study of stochastic systems, simulation is an
increasing necessity. With the proliferation of nonlinear, non-
Gaussian applications of interest in filtering and estimation,
for example, often stochastic simulation is the only tractable
option. The cost of such computations grows dramatically
with the scale, complexity or desired accuracy of the simu-
lation, and practical, provable methods to increase efficiency
of simulation are often indispensable. A common problem is
the reduction of variance of Monte Carlo estimates of system
features. In previous work [8], [7], we have defined and
proved several anticorrelated variance reduction techniques
for the simulation and estimation of Markov jump processes
using a discrete-time tau leaping approximation. In this
work, we extend those efforts to an exact, continuous-time
domain. Specifically, we rigorously construct principle-based
simulation schemes that produce anticorrelated ensembles of
continuous time Markov jump process paths that can be
used to construct reduced variance mean estimators. The
crux of the approach is the random time-change (RTC)
representation of a Markov jump process due to Kurtz [5]:

X(t) = x0 +
I∑

i=1

Y i

(∫ t

s=0

ρi(s,X(s)) ds

)
ζi, (1)

driven by independent, unit-rate Poisson processes Y i. This
model description is extremely general, and can be used
to construct virtually any discrete-space Markov process.
Inspired by classical anticorrelated variance reduction tech-
niques (primarily here pairs of antithetic variates), we care-
fully construct pairs of realizations (Y i,(1), Y i,(2)) of the
Poisson process that are pairwise negatively correlated. Us-
ing I independent realizations of these anticorrelated pairs of
Poisson processes, we may construct anticorrelated realiza-
tions (X(1), X(2)) of the Markov jump process of interest,
producing an ensemble from which to construct variance-
reduced estimates of the mean behavior of the process.

The variance reduction approach of producing anticorre-
lated realizations of complicated stochastic processes by ma-
nipulating the elemental processes that drive them is already
in use in many contexts. The most common is probably
the antithetic simulation of Brownian motion to produce
continuous time Markov processes, where the construction of
perfect antithetic pairs is trivial due to symmetry. Producing
valid realizations of the Poisson process that are significantly
negatively correlated requires somewhat more effort, and the
inherent asymmetry of the process does not readily demon-
strate optimality of any particular approach. The Markov
jump processes that they drive, however, are of tremendous
theoretical and practical interest, for example in the study of
chemical reaction networks [9], gene regulation networks [2],
and atmospheric aerosol simulation [10]. In each of these
areas, variance reduction techniques are of great benefit to
reduce the cost of stochastic simulation. The manipulation of
the random process inputs of the RTC as a variance reduction
approach has precedents as well, for example the common
reaction path method of Rathinam, et al. [9] and the strong
coupling of Poisson process inputs by Anderson [1], both
in service of parameter sensitivity analysis. Furthermore,
the use of related anticorrelated ensemble techniques in the
context of the discrete-time tau-leaping approximation of the
Markov jump process is the subject of [8]. The primary
contribution of this paper is the construction of antithetic
Poisson processes and their use in the RTC for the purpose
of exact simulation and variance reduced mean estimation of
continuous time processes.

The sequel is organized as follows. First, we propose
several techniques to produce anticorrelated unit rate Poisson
processes using any existing anticorrelated technique, though
here only explicitly considering antithetic pairs. For each
method, we provide analytical and numerical support, and
illustrate the usefulness and challenges of each. Next we
show how to use these methods in support of simulation
of Markov jump processes, as well as prove a sufficient
condition for variance reduction in this setting. Finally, we
provide a simple numerical example illustrating the potential
effectiveness of the method.

II. ANTICORRELATED CONTINUOUS-TIME POISSON
PROCESSES

We begin by defining several algorithms to exactly simu-
late Poisson processes, while ensuring that they be as nega-
tively correlated as possible. Such an anticorrelated ensemble
of realizations could then be used to construct reduced
variance mean estimates of the process, and, moreover, be
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used to produce anticorrelated ensembles of general Markov
jump process paths via the RTC.

Consider a unit-rate Poisson process Y (t) over a finite
time interval [0, T ]. We define sampling algorithms to pro-
duce anticorrelated sample paths of this process in order to
create variance reduced pathwise mean estimators. In order
to produce pathwise anticorrelated processes, we require
in addition a method α of random variable simulation to
produce Poisson variables {X(j)}M

j=1, Xj
α∼ Pois(λ), an

ensemble of pairwise negatively correlated Poisson random
variables such that Cov(X(j1), X(j2)) ≤ 0. Without loss of
generality, we restrict our analysis to an antithetic method α
producing pairwise antithetic variables X(1) := F−1

λ (U) and
X(2) := F−1

λ (1−U), where U ∼ Unif(0, 1) and F−1
λ is the

formal inverse of the CDF of a Poisson random variable with
parameter λ. This is a well-known, classical technique [11],
but its use in this specific context is covered in detail in [6]
and [8].

Our objective is to produce pairs of Poisson process
sample paths (Y (1), Y (2)) such that, for every t ∈ [0, T ],
Cov(Y (1)(t), Y (2)(t)) ≤ 0. The motivation for this is that
an estimator of the mean behavior E[Y (t)] of the process,
say Ψ(t) = 1

2 (Y (1)(t) + Y (2)(t)), will have variance given
by

Var(Ψ(t)) =
1
2

Var(Y (t)) +
1
2

Cov(Y (1)(t), Y (2)(t)) (2)

≤ 1
2

Var(Y (t)), (3)

where the last term would be the variance of an estimator
constructed using independent Poisson process paths.

The first approach to producing such ensembles is the
endpoint approach. One way to simulate a Poisson process is
to sample the value of the process (a Poisson random variable
denoting the number of jumps occurring by that time) at
some endpoint T of time and then sample when all of those
jumps occurred in [0,T] (which will each have Unif(0, T )
distribution). The idea of the endpoint method is to instead
simulate two Poisson processes simultaneously by using an
antithetic pair of Poisson random variates as their values at
time T . Thus by construction, these two values, Y

(1)
E (T )

and Y
(2)
E (T ), will be negatively correlated. We simulate the

jump times as in the naive i.i.d. case. The endpoint method
is summarized in Algorithm 1. A pair of antithetic sample

Algorithm 1 Endpoint Method
1) Using method α, simulate anticorrelated Poisson ran-

dom variables Y
(j)
E (T ) α∼ Pois(T )

2) Simulate the corresponding jump times t
(j)
i

i.i.d.∼
Unif(0, T ), i ∈ {1, . . . , Y

(j)
E (T )} for each path j ∈

{1, . . . ,M}

paths simulated using the endpoint method are shown in
Figure 1. Now, while the two paths are explicitly negatively
correlated at time T , they are also negatively correlated
throughout the time interval, and thus, a pathwise mean

0 2 4 6 8 10
time t

0

2

4

6

8

10

12

14

st
at

e

Y 1(t)

Y 2(t)

Fig. 1. Two anticorrelated sample paths of a unit rate Poisson process
simulated using the endpoint antithetic pathwise sampling technique. In this
case Y

(1)
E (10), Y

(2)
E (10)

anti.∼ Pois(10) are antithetically sampled.

estimator constructed using these samples will have reduced
variance relative to a naive estimator throughout the time
interval, as shown in Lemma 2. To prove this result, we first
prove a very useful Lemma that computes the covariance at
interior points in terms of covariances at endpoints of certain
intervals.

Lemma 1: Let Y (1)(t) and Y (2)(t), t ∈ [0, T ] be
two (possibly correlated) unit rate Poisson processes.
For any T1 < T2 ∈ [0, T ], define G(T1, T2) :=
σ{Y (1)(T1), Y (1)(T2), Y (2)(T1), Y (2)(T2)}, the σ-algebra
defined by these four random variables. If, for any t ∈
(T1, T2), conditioned on G(T1, T2), Y (1)(t) and Y (2)(t) are
independent , then for every t ∈ [T1, T2]:

Cov(Y (1)(t), Y (2)(t)) = Cov(Y (1)(T1), Y (2)(T1))

+
(t− T1)2

(T2 − T1)2
Cov(N (1)(T1, T2), N (2)(T1, T2)) (4)

where N (j)(T1, T2) := Y (j)(T2)−Y (j)(T1) is the increment
of the process. Alternatively:

Cov(Y (1)(t), Y (2)(t))

=
T2 − t

(T2 − T1)2
(T2 + t− 2T1) Cov(Y (1)(T1), Y (2)(T1))

+
(t− T1)2

(T2 − T1)2
Cov(Y (1)(T2), Y (2)(T2)) (5)

Proof: For the sake of brevity, we prove only (4). The
proof of (5) is similar but more algebraically tedious.

E
[
Y (1)(t)Y (2)(t)

]
= E

[
E
[
Y (1)(t)Y (2)(t)

∣∣∣G]]
= E

[
E
[
Y (1)(t)

∣∣∣G]E
[
Y (2)(t)

∣∣∣G]]
= E

[ [
Y (1)(T1) +

t− T1

T2 − T1
N (1)(T1, T2)

]

·
[
Y (2)(T1) +

t− T1

T2 − T1
N (2)(T1, T2)

]]
= E

[
Y (1)(T1)Y (2)(T1)

]
+ 2T1(t− T1)

+
(t− T1)2

(T2 − T1)2
E
[
N (1)(T1, T2)N (2)(T1, T2)

]
.
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Note that

t2 = T 2
1 + 2T1(t− T1) +

(t− T1)2

(T2 − T1)2
(T2 − T1)2, (6)

so that

Cov(Y (1)(t), Y (2)(t)) = E
h
Y (1)(T1)Y

(2)(T1)
i
− t2 (7)

= E
h
Y (1)(T1)Y

(2)(T1)
i
− T 2

1

+
(t − T1)

2

(T2 − T1)2

“
E

h
N (1)(T1, T2)N

(2)(T1, T2)
i
− (T2 − T1)

2
”
(8)

= Cov(Y (1)(T1), Y
(2)(T1))

+
(t − T1)

2

(T2 − T1)2
Cov(N (1)(T1, T2), N

(2)(T1, T2)), (9)

and the claim holds.
This Lemma may now be immediately used to prove that
there is negative correlation between endpoint antithetic
Poisson process pairs at every t ∈ [0, T ], not just the
endpoint.

Lemma 2: Suppose Y
(1)
E (t), Y (2)

E (t) are simulated using
Algorithm 1 for t ∈ [0, T ] and some anticorrelated sampling
method α. Then Cov(Y (1)

E (t), Y (2)
E (t)) ≤ 0, for every t ∈

[0, T ].
Proof: We proceed by application of Lemma 1. First,

note that, by construction Cov(Y (1)
E (T ), Y (2)

E (T )) ≤ 0 since
these are precisely the antithetically sampled Poisson random
variables. Further, note that, conditioned on Y (1)(T ) and
Y (2)(T ), Y (1)(t) and Y (2)(t) are independent for every
t ∈ (0, T ). Thus, by (4),

Cov(Y (1)
E (t), Y (2)

E (t)) =
t2

T 2
Cov(N (1)

E (0, T ), N (2)
E (0, T ))

(10)

=
t2

T 2
Cov(Y (1)

E (T ), Y (2)
E (T )) ≤ 0,

for every t ∈ [0, T ].
Thus, at time T , the paths will have the same negative
correlation as is produced by the random variable method,
and this negative correlation will be felt by the interior points
with a quadratic relationship. As a direct consequence of this
result, unbiased pathwise mean estimators constructed using
these anticorrelated samples will have reduced variance.

Corollary 1: Suppose Ψ(t) := 1
2 (Y (1)(t) + Y (2)(t)) and

ΨE(t) := 1
2 (Y (1)

E (t) + Y
(2)
E (t)) are two unbiased mean

estimators of E[Y (t)] constructed using sample paths drawn
i.i.d. and via the antithetic endpoint technique, respec-
tively. Then Var(Ψ(t)) ≥ Var(ΨE(t)) = Var(Ψ(t)) +
1
2 Cov(Y (1)

E (t), Y (2)
E (t)).

Figure 2 illustrates this fact by plotting the variance of two
4-sample mean estimators, one using the traditional Monte
Carlo estimation scheme (4 i.i.d. sampe paths) and one using
two pairs of endpoint antithetically sampled Poisson process
paths versus time. Here, we observe a dramatic reduction of
variance at time t = 10, and some gains for smaller time.

We may improve performance in the interior of the time
interval via an obvious extension, the Concatenation tech-
nique. By exploiting the independent increments property of
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time

 

 
Naive
Endpoint

Fig. 2. Comparison variances of a 4-sample unit-rate Poisson process
endpoint antithetic mean estimator Ψ4

E(t) to the naive (i.i.d.) 4-point mean
estimator Ψ4(t).

Poisson processes, we split the interval [0, T ] into smaller
sub-intervals and simulate each Poisson process increment
using the endpoint technique, as shown in Alg. 2. A pair

Algorithm 2 Concatenation Method
1) Divide the interval [0, T ] into K equal length sub-

intervals
2) Using method α, simulate anticorrelated Poisson

random variable increments N
(j)
C (T k−1

K , T k
K ) :=

Y
(j)
C (T k

K ) − Y
(j)
C (T k−1

K ) α∼ Pois( T
K ) for k ∈

{1, . . . ,K}
3) Simulate the corresponding jump times

t
(j)
i

i.i.d.∼ Unif(T k−1
K , T k

K ), i ∈ {Y (j)
C (T k−1

K ) +
1, . . . , Y

(j)
C (T k

K )}, k ∈ {1, . . . ,K} for each path
j ∈ {1, . . . ,M}

of sample paths simulated using the concatenated antithetic
sampling technique for K = 2 and T = 10 are shown in
Fig. 3. As shown in Fig. 4, by splitting the time interval
in half, we achieve another large reduction in the variance
of a mean estimator at the concatenation point where an
antithetic pair of Poisson random variables are used. Note
also that, in this case there is a small sacrifice in performance
at the endpoint t = 10. This is due to the independent
increments property implying that the covariances of sums of
increments are sums of covariances of increments, resulting
in an upward drift of the estimator variance at the endpoint.
As in Corollary 1, the following Lemma is equivalent to
variance reduction of a mean estimator using these sample
paths.

Lemma 3: Suppose Y
(1)
C (t), Y (2)

C (t) are simulated using
Algorithm 2 for t ∈ [0, T ] and some anticorrelated sampling
method α. Then Cov(Y (1)

C (t), Y (2)
C (t)) ≤ 0, for every t ∈

[0, T ].
Proof: First, note that each increment

N
(j)
C (T k−1

K , T k
K ) = Y

(j)
C (T k

K ) − Y
(j)
C (T k−1

K ), k ∈
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Fig. 3. Pair of anticorrelated unit-rate Poisson process sample paths
simulated using concatenated antithetic pathwise sampling. Note here that
Y

(1)
C (5), Y

(2)
C (5)

anti.∼ Pois(5) are independent of (Y
(1)
C (10) − Y

(1)
C (5))

and (Y
(2)
C (10)− Y

(2)
C (5))

anti.∼ Pois(5).

{1, . . . ,K} satisfies

Cov
(

N
(1)
C

(
T

k − 1
K

,T
k

K

)
, N

(2)
C

(
T

k − 1
K

,T
k

K

))
≤ 0

(11)
since these are each antithetically sampled random variables.
Next, it is easy to see that the conditional independence
requirement of Lemma 1 is satisfied by the process within
each small interval, since Y

(1)
C (t), Y (2)

C (t) are independent
conditioned on G(T k−1

K , T k
K ) for each t ∈ (T k−1

K , T k
K ) by

construction.
Thus for the leftmost interval, by (4), we have that

Cov(Y (1)
C (t), Y (2)

C (t))

=
t2

( T
K )2

Cov
(

N
(1)
C

(
0,

T

K

)
, N

(2)
C

(
0,

T

K

))
(12)

for every t ∈ [0, T
K ]. By the same reasoning, for t ∈ [ T

K , 2T
K ],

Cov
(
Y

(1)
C (t), Y (2)

C (t)
)

= Cov
(

Y
(1)
C

(
T

K

)
, Y

(2)
C

(
T

K

))
+

(t− T
K )2

( T
K )2

Cov
(

N
(1)
C

(
T

K
,
2T

K

)
, N

(2)
C

(
T

K
,
2T

K

))
(13)

= Cov
(

N
(1)
C

(
0,

T

K

)
, N

(2)
C

(
0,

T

K

))
+

(t− T
K )2

( T
K )2

Cov
(

N
(1)
C

(
T

K
,
2T

K

)
, N

(2)
C

(
T

K
,
2T

K

))
.

(14)

By continuing this process from left to right, it is easy to
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Fig. 4. Comparison of variance of a 4-sample mean estimator Ψ4
C(t) of

a unit-rate Poisson process constructed using K = 2 step concatenated
antithetic sample paths to variances of a 4-sample endpoint antithetic mean
estimator Ψ4

E(t) and the naive 4-sample mean estimator Ψ4(t).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

time

 

 
Naive
Endpoint
Concatenate

Fig. 5. Comparison of variances of a 4-sample mean estimator Ψ4
C(t) of

a unit-rate Poisson process constructed using K = 16 step concatenated
antithetic sample paths to a 4-sample endpoint antithetic mean estimator
Ψ4

E(t) and the naive 4-sample mean estimator Ψ4(t).

see that, for any t ∈ [0, T ].

Cov
“
Y

(1)
C (t), Y

(2)
C (t)

”
=

k∗X
k=1

Cov

„
N

(1)
C

„
(k − 1)T

K
,
kT

K

«
, N

(2)
C

„
(k − 1)T

K
,
kT

K

««

+
(t − k∗T

K
)2

( T
K

)2

· Cov

„
N

(1)
C

„
k∗T

K
,
(k∗ + 1)T

K

«
, N

(2)
C

„
k∗T

K
,
(k∗ + 1)T

K

««
,

(15)

where k∗ := max{k ∈ N : kT
K ≤ t} = b tK

T c. Since each of
these covariances is negative, the claim holds.

A direct consequence of this fact is that concatenation
may not perform better than the endpoint technique as the
number of concatenation steps K increases. Fig. 5 illustrates
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Fig. 6. An anticorrelated pair of sample paths produced
using L = 2 (comparable to a 4-step concatenated path).
Note here that Y

(j)
B (10)

anti.∼ Pois(10) is sampled first,
then Y

(j)
B (5)|Y (j)

B (10)
anti.∼ Binom(Y

(j)
B (10), 1/2), and

finally Y
(j)
B (2.5)|Y (j)

B (5)
anti.∼ Binom(Y

(j)
B (5), 1/2) and

[Y
(j)
B (7.5)− Y

(j)
B (5)]|{Y (j)

B (5), Y
(j)
B (10)} anti.∼ Binom(5, 1/2).

this problem by showing the drift in variance that occurs
when 16 concatenation steps are used.

A more ideal mean estimator is one who’s endpoint
performance matches that of the endpoint algorithm but that
further improves performance away from the endpoint T .
We achieve such an algorithm by again exploiting the fact
that, conditioned on its future value, a Poisson process has
binomial distribution. This algorithm, referred to here as
binomial midpoint simulation method, is defined in Algo-
rithm 3. The key discovery is that, once we sample the
values of the process at the endpoints of an interval, we
may conditionally sample the midpoint of that interval using
a binomial distribution. When we perform this sampling, we
use the anticorrelated method α, reducing the variance of an
estimator at this midpoint. We may then recursively sample
the midpoints of these new intervals, repeatedly bijecting
until we have 2L steps. We then finish the simulation of
the Poisson process by sampling i.i.d. uniform jump times,
similar to the concatenation method.

Algorithm 3 Binomial Midpoint Method
1) Divide the interval [0, T ] into 2L subintervals
2) Simulate Y

(j)
B (T ) α∼ Pois(T ) as in Alg. 1

3) Simulate Y
(j)
B (T

2 )|Y (j)
B (T ) α∼ Binom(Y (j)

B (T ), 1
2 )

4) Fix ` = 2, . . . , L. Then, for each
k ∈ {1, 3, 5, . . . , 2` − 1} simulate
N

(j)
B (T (k−1)

2` , T k
2` )|{Y (j)

B (T (k+1)
2` ), Y (j)

B (T (k−1)
2` )}

α∼ Binom(Y (j)
B (T (k+1)

2` )− Y
(j)
B (T (k−1)

2` ), 1
2 )

5) Simulate jump times t
(j)
i

i.i.d.∼ Unif(T k−1
2L , T k

2L ), i ∈
{Y (j)

B (T k−1
2L ) + 1, . . . , Y

(j)
B (T k

2L )}, k ∈ {1, . . . , 2L}
for each path j ∈ {1, . . . ,M}

A pair of binomial antithetic sample paths for L = 2 is
shown in Fig. 6. While dividing the interval by powers of 2 is

not strictly necessary, dyadic intervals are chosen to produce
binomial distributions with p = 1

2 , since antithetic sampling
is more effective for symmetric distributions. The algorithm
performs better as the number of midpoints increases, until
reaching a saturation point when midpoints become nearly
constant, i.e. when the expected number of transitions in an
interval is small. As in Corollary 1, the following Lemma is
equivalent to variance reduction of a mean estimator using
these sample paths.

Lemma 4: Suppose Y
(1)
B (t), Y (2)

B (t) are simulated using
Algorithm 3 for t ∈ [0, T ] and some anticorrelated sampling
method α. Then Cov(Y (1)

B (t), Y (2)
B (t)) ≤ 0, for every t ∈

[0, T ].
Proof: As in the endpoint method case,

Cov(Y (1)
B (T ), Y (2)

B (T )) ≤ 0 as this is an antithetic
pair of Poisson samples. For any interior interval boundary
point t∗ = k

2` , k ∈ {1, 3, . . . , 2`−1}, Y
(1)
B (t∗) and Y

(2)
B (t∗)

are a conditionally sampled antithetic pair, that is

Cov
(

Y
(1)
B (t∗), Y (2)

B (t∗)
∣∣∣G(t∗ − 1

2`
, t∗ +

1
2`

))
≤ 0, (16)

where the left hand side is a G
(
t∗− 1

2` , t∗+ 1
2`

)
-measurable

random variable. Furthermore,

E
[
Y

(j)
B (t∗)

∣∣∣G(t∗ − 1
2`

, t∗ +
1
2`

)]
=

1
2

(
Y

(j)
B (t∗ − 1

2`
) + Y

(j)
B (t∗ +

1
2`

)
)

(17)

so that

Cov
(
E
[
Y

(1)
B (t∗)

∣∣∣G] , E
[
Y

(2)
B (t∗)

∣∣∣G]) (18)

=
1
4

Cov(Y (1)
B (t∗−), Y (2)

B (t∗−))

+
1
4

Cov(Y (1)
B (t∗−), Y (2)

B (t∗+))

+
1
4

Cov(Y (1)
B (t∗+), Y (2)

B (t∗−))

+
1
4

Cov(Y (1)
B (t∗+), Y (2)

B (t∗+)), (19)

where t∗+ and t∗− denote the “parents” of t∗, t∗− 1
2` = k−1

2`−1

and t∗ + 1
2` = k

2`−1 , respectively. Thus, by the law of total
covariance

Cov
(
Y

(1)
B (t∗), Y (2)

B (t∗)
)

= E
[
Cov

(
Y

(1)
B (t∗), Y (2)

B (t∗)
∣∣∣G(t∗ − 1

2`
, t∗ +

1
2`

))]
+

1
4

Cov(Y (1)
B (t∗−), Y (2)

B (t∗−))

+
1
4

Cov(Y (1)
B (t∗−), Y (2)

B (t∗+))

+
1
4

Cov(Y (1)
B (t∗+), Y (2)

B (t∗−))

+
1
4

Cov(Y (1)
B (t∗+), Y (2)

B (t∗+)). (20)

Note that the first term is negative, and the argument repeats
for each of the other terms, rewriting them as a linear
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Fig. 7. Comparison of variance of a 4-sample unit-rate Poisson process
mean estimator Ψ4

B(t) constructed using 2-step binomial midpoint antithetic
sample paths to the variances of a 2-step concatenated antithetic Ψ4

C(t),
endpoint antithetic Ψ4

E(t) and naive Ψ4(t) equivalents.
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Fig. 8. Comparison of variance of a 4-sample unit-rate Poisson process
mean estimator Ψ4

B(t) constructed using 16-step binomial midpoint anti-
thetic sample paths to the 2-step concatenated antithetic Ψ4

C(t), endpoint
Ψ4

E(t) antithetic and naive Ψ4(t) equivalents.

combination of some negative value plus a covariance of
Y (1) and Y (2) evaluated at their “parent” times. These
recursions will terminate with Cov(Y (1)

B (0), Y (2)
B (0)) and

Cov(Y (1)
B (T ), Y (2)

B (T )), each of which is non-positive, so
we have that Cov

(
Y

(1)
B (t∗), Y (2)

B (t∗)
)
≤ 0 for each interior

interval boundary point t∗. The claim holds at the remaining
points t ∈ [0, T ] by (5), since

Cov(Y (1)(t), Y (2)(t))

=
k
2L − t

2−2L
(

k

2L
+ t− 2

k − 1
2L

) Cov(Y (1)(
k − 1
2L

), Y (2)(
k

2L
))

+
(t− k−1

2L )2

2−2L
Cov(Y (1)(

k − 1
2L

), Y (2)(
k − 1
2L

)), (21)

for t ∈ [k−1
2L , k

2L ].

III. ANTICORRELATED CONTINUOUS-TIME MARKOV
JUMP PROCESSES

We now produce variance reduced sample paths of
continuous-time Markov jump processes by driving these
processes with anticorrelated unit-rate Poisson processes.
Consider the random time change representation of a Markov
jump process,

X(t) = x0 +
I∑

i=1

Y i

(∫ t

s=0

ρi(s,X(s)) ds

)
ζi,

where Y is a unit-rate Poisson process and ρi and ζi are the
propensity function and jump vector of a reaction channel i.
There are several ways to simulate such systems, for example
Gillespie’s stochastic simulation algorithm (SSA) [3] for
exact simulation or tau-leaping [4] for discrete-time approxi-
mate simulation. Another way to exactly simulate the system
is to simulate the unit-rate Poisson processes that drive
the Markov process and compute the realized jump times
and states using the propensity functions and jump vectors.
Taking this approach, if we replace the use of i.i.d. unit-rate
Poisson processes with anticorrelated identically distributed
unit-rate Poisson processes, as constructed in Section II,
we produce exact realizations of the Markov jump process
that are negatively correlated and hence produce variance-
reduced mean estimates. Theorem 5 proves this result in the
case of non-negative time-dependent propensity functions,
ρi(s,X(s)) = ρi(s).

Theorem 5: For each i ∈ {1, . . . , I}, let Y i,(1)(t) and
Y i,(2)(t) be i.i.d. realizations of a unit-rate Poisson process
Y . Let Y

i,(1)
α (t) and Y

i,(2)
α (t) be antithetically simulated

realizations of Y using any of the above techniques such
that Cov(Y i,(1)

α (t), Y i,(2)
α (t)) ≤ 0 for every t ∈ [0, T ] and

Y
i1,(j1)
α (t) and Y

i2,(j2)
α (t) are independent for each i1 6= i2.

Let X(1)(t) and X(2)(t) be i.i.d. realizations of a Markov
jump process X(t) such that

X(j)(t) = x0 +
I∑

i=1

Y i,(j)

(∫ t

s=0

ρi(s) ds

)
ζi, (22)

for every t ∈ [0, T ∗] where T ∗ is defined such that T =
maxi

∫ T∗

s=0
ρi(s) ds. Let X

(1)
α (t) and X

(2)
α (t) be defined such

that

X(j)
α (t) = x0 +

I∑
i=1

Y i,(j)
α

(∫ t

s=0

ρi(s) ds

)
ζi. (23)

Finally, let Ψ(t) := 1
2 (X(1)(t) + X(2)(t)) and Ψα(t) :=

1
2 (X(1)

α (t) + X
(2)
α (t)) be the unbiased 2-sample mean es-

timators of X(t). Then trVar(Ψα(t)) ≤ trVar(Ψ(t)) for
every t ∈ [0, T ∗]. In particular, continuous time anticorre-
lated Markov jump process sampling reduces MSE of mean
estimators.

Proof: It suffices to show that
trCov(X(1)

α (t), X(2)
α (t)) ≤ 0 for every t ∈ [0, T ∗].
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Then

Cov(X(1)
α (t), X(2)

α (t))

= Cov

(
I∑

i1=1

Y i1,(1)
α

(∫ t

s=0

ρi1(s) ds

)
ζi1 ,

I∑
i2=1

Y i2,(2)
α

(∫ t

s=0

ρi2(s) ds

)
ζi2

)
(24)

=
I∑

i=1

Cov

(
Y i,(1)

α

(∫ t

s=0

ρi(s) ds

)
,

Y i,(2)
α

(∫ t

s=0

ρi(s) ds

))
ζiζi>. (25)

The scalar covariance in (25) is negative by the Poisson
process Lemmas above. Thus

trCov(X(1)
α (t), X(2)

α (t))

=
I∑

i=1

Cov

(
Y i,(1)

α

(
τ i(t)

)
, Y i,(2)

α

(
τ i(t)

))
‖ζi‖2

2 (26)

≤ 0, (27)

for every t ∈ [0, T ∗], where τ i(t) :=
∫ t

s=0
ρi(s) ds.

IV. RADIOACTIVE DECAY

While the requirement of Theorem 5 that the rate functions
depend only on time can sometimes be restrictive, this
condition is sufficient but hardly necessary. In practice, these
variance reduction techniques can be beneficial even in the
state-dependent or nonlinear cases. As an example, consider
a simple model of radioactive decay with state-dependent
rates, defined by

X(t) = x0 − Y

 t∫
0

λX(s) ds

 , (28)

for some scalar rate parameter λ > 0. A pair of anticorrelated
sample paths of this process are shown in Fig. 9. The
antithetic 4-sample mean estimator using each of the above
techniques were constructed and their estimated autocovari-
ances are shown in Fig. 10. Note the almost 75% variance
reduction in some regimes.
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