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BINNING FOR EFFICIENT STOCHASTIC MULTISCALE
PARTICLE SIMULATIONS∗

M. D. MICHELOTTI† , M. T. HEATH† , AND M. WEST‡

Abstract. Gillespie’s Stochastic Simulation Algorithm (SSA) is an exact procedure for simulat-
ing the evolution of a collection of discrete, interacting entities, such as coalescing aerosol particles
or reacting chemical species. The high computational cost of SSA has motivated the development
of more efficient variants, such as Tau-Leaping, which sacrifices the exactness of SSA. For models
whose interacting entities can be characterized by a continuous parameter, such as a measure of size
for aerosol particles, we analyze strategies for accelerating these algorithms by aggregating particles
of similar size into bins. We show that for such models an appropriate binning strategy can dra-
matically enhance efficiency, and in particular can make SSA computationally competitive without
sacrificing exactness. These strategies are especially effective for highly multiscale problems. We for-
mulate binned versions of both the SSA and Tau-Leaping algorithms and analyze and demonstrate
their performance.

Key words. stochastic simulation algorithm, continuous-time Markov process, Monte Carlo,
atmospheric aerosol, coagulation
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1. Stochastic particle simulation. Gillespie’s Stochastic Simulation Algo-
rithm (SSA) is a Monte Carlo procedure for simulating the evolution of a collection of
discrete, interacting entities, such as coalescing aerosol particles [5] or chemically re-
acting species [6], whose interactions are stochastic. SSA tracks each individual entity
in a collection and provides an exact realization of the underlying Markov process,
but the resulting computational cost is usually deemed prohibitive for large numbers
of particles. The high computational cost of SSA has motivated the development of
more efficient variants for the purpose of simulating chemically reacting species. Some
of these (e.g., [4, 9, 12]) retain the exactness of SSA.

A popular variant of SSA is Tau-Leaping [7], originally developed for simulating
chemically reacting systems, which have a discrete space of reactants and reaction
channels. Tau-Leaping achieves greater acceleration by amalgamating interactions
over a time interval τ during which interaction propensities are assumed not to vary
significantly, thereby “leaping” in time over multiple interactions. Unfortunately, the
resulting simulation is no longer exact, and the trade-off between the speed of the
algorithm and the accuracy of the approximation depends on the potentially delicate
choice of the time step. Tau-Leaping has been improved in various ways, such as
improving rules for adaptive selection of the time step τ [8, 14]. However, Tau-
Leaping is not directly applicable to the simulation of coalescing aerosol particles, as
aerosol particles have a continuous range of sizes rather than occurring in a small
number of discrete classes.

Here we explore a different approach to accelerating SSA and Tau-Leaping for
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Fig. 1.1. Conceptual relationship between Gillespie’s original SSA method [5] (SSA’75),
his reformulation for chemical kinetic systems [6] (SSA’77), his Tau-Leaping method [7] (Tau-
Leaping ’01), and the binned versions of these methods presented in this paper in sections 2.1 and 2.2.

models whose interacting entities can be characterized by a continuous parameter,
such as a measure of size for aerosol particles, in which particles of similar size are
aggregated into bins. This approach is inspired by the highly multiscale nature of
atmospheric aerosol particles, whose volumes can span many orders of magnitude.
We analyze various binning strategies and show that for such models an appropriate
binning strategy can dramatically enhance efficiency, and in particular can make SSA
competitive with Tau-Leaping without sacrificing exactness.

The relationships among the original SSA and Tau-Leaping methods and our new
binned versions are shown schematically in Figure 1.1. SSA’77 [6] assumes that the
system state consists of many molecules or entities, each of which belongs to one
of a relatively small number of species or classes, and is indistinguishable from all
other molecules from the same species. This property allows the SSA’75 [5] method
to be modified to aggregate operations by species. This approach in turn forms the
basis for Tau-Leaping’01 [7], where events are further aggregated over a time step of
length τ . The binned methods developed in the present paper can be understood in a
similar way, in which the system state consists of many particles that can be grouped
together into bins (analogous to species). The difference is that the particles in a
bin are merely similar to each other, rather than identical, which requires modified
algorithms that include postsample accept-reject stages.

SSA and its variants can simulate a wide variety of Markov processes, but for our
main application example we will focus on the simulation of atmospheric aerosols, in
which particles may interact by coagulation, where two particles coalesce to form a
single, larger particle. Particle coagulations are modeled to occur at stochastic rates
determined by properties of the coagulating particles. Figure 1.2 depicts the event
probability rates for Brownian coagulation [11]. Since the particle volumes are highly
multiscale, the Brownian coagulation rates are also highly multiscale.

Stochastic aerosol models were the original motivation for formulating SSA [5],
but it has been used relatively little for such problems because of the high cost for real-
istic numbers of particles. Sectional or modal aerosol models [2, 10, 17, 20] seem more
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Fig. 1.2. Brownian kernel coagulation rates between two particles p and q [11], scaled by volume
of simulation domain. All particles have density of water, 1000 kg/m3.

efficient for such systems, since individual particles need not be tracked. However,
such models do not usually capture the multidimensional nature of particle composi-
tion. Atmospheric aerosol particles contain a mixture of chemical species, on the order
of 20 different species in modern models [19]. For such high-dimensional problems,
Monte Carlo methods based on stochastic particle interactions can be competitive.
This is the motivation behind the software package PartMC, which uses a particle-
resolved aerosol model [3, 15, 16, 18]. For its coagulation routine, PartMC currently
uses a binned version of Tau-Leaping, which we will refer to as Binned Tau-Leaping.

This paper is organized as follows. The remainder of section 1 describes the
generic stochastic model that we will be simulating and introduces notation for the
binning structure. Section 2 formulates binned versions of both SSA and Tau-Leaping.
Binned SSA is shown to retain the exactness of SSA. Based on both theoretical anal-
ysis and a series of computational test problems, Binned SSA is shown to be competi-
tive in computation time with Binned Tau-Leaping. Section 3 analyzes static binning
schemes, justifies the use of logarithmic binning for multiscale aerosol coagulation,
and discusses an approach to an adaptive binning scheme. The test problems and
testing methodology we use are summarized in the appendix.

1.1. Stochastic event model. Using terminology motivated by aerosol model-
ing, consider a space of possible “particles” P . Any two particles in P can undergo a
pairwise “event.” The specific definition of such an event depends on the application.
For example, in the stochastic coalescence model, these events are particle coagula-
tions. It should be noted that the principles of this stochastic event model, as well as
the algorithms discussed in this paper, can be applied to events involving one particle,
two particles, three particles, and so on. For simplicity and readability, however, we
will focus on the two-particle case, considering only pairwise events.
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1074 M. D. MICHELOTTI, M. T. HEATH, AND M. WEST

Define a kernel function K : P ×P → R
+, where K(p, q) is the stochastic rate at

which events occur between particles p and q. For notational simplicity, we assume
that no two particles in the simulation are the same element of P . Let π ⊂ P be
the particles present at the current stage of the simulation. Our model defines π as
a function of time subject to stochastic pairwise events at rates given by the kernel
K. We assume this is a continuous-time Markov process for which we are given the
initial value of π at time zero.

Because the events occur stochastically, π is a random variable. Our task is to
implement a Monte Carlo simulation to generate a realization of π as a function of
time. More sophisticated simulations may involve other processes occurring alongside
these events or multiple kinds of events. The algorithms discussed in this paper can
be readily coupled with such other processes.

1.2. Binning particles. Performing a stochastic simulation that considers all
possible pairwise events can be expensive if done naively. It is useful to bin similar
particles together and consider interactions between bins. However, special care must
be taken to ensure that a simulation over bins well approximates a simulation over
individual particles.

For ease of presentation we assume that the kernel values can be well-bounded
by a function of two scalar parameters describing the two particles. This assumption
is not essential, however, and algorithms using multidimensional bins can be readily
formulated.

In order to bin particles together, we need a way to determine whether two parti-
cles are similar to each other in some sense. For this purpose, we employ a magnitude
operator | · | : P → R that characterizes each particle by a real number, which could
be its volume, diameter, mass, etc. The choice of magnitude operator will affect the
performance of the algorithms to be discussed in this paper, but it will not affect the
accuracy of the algorithms. An appropriate magnitude operator may be determined
in part by considering how the kernel is implemented. We will need a reasonable
upper bound on the kernel given only the magnitudes of the two particles.

In the case of atmospheric aerosol particle coagulations, particle volume is an
appropriate choice for the magnitude. The Brownian coagulation kernel depends only
on the volume and density of each particle [11], and particle densities do not vary
significantly. Therefore, we can achieve a reasonable upper bound for the Brownian
kernel knowing only the volume.

The particles in the simulation are grouped into bins based on their magnitudes.
Let ν0, . . . , νm ∈ R be a strictly increasing sequence that denotes the boundaries of
m bins. We will use the following definitions to describe the bins:

R(a, b) := {p ∈ P : a < |p| ≤ b} for a, b ∈ R,(1.1)

ri := R(νi−1, νi),(1.2)

r(p) := ri, where i is chosen such that p ∈ ri,(1.3)

πi := ri ∩ π,(1.4)

Kup(ri, rj) ≥ sup {K(p, q) : p ∈ ri, q ∈ rj}.(1.5)

Collectively, the sets π1, . . . , πm partition π according to the bin ranges. The function
Kup is an upper bound on the value of the kernel over a given pair of bins. Using a
tighter upper bound will result in a more efficient algorithm, but the accuracy of the
algorithm will remain the same.

We can find an upper bound Mij on the stochastic event rate between any two
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BINNING FOR STOCHASTIC PARTICLE SIMULATIONS 1075

bins i and j, with i ≤ j. Specifically,

(1.6) Mij := θijKup(ri, rj),

where

(1.7) θij :=

{
|πi| |πj |, i �= j,
1
2 |πi|(|πi| − 1), i = j.

We will also use the following aggregates:

Mi :=

m∑
j=i

Mij ,(1.8)

M0 :=

m∑
i=1

m∑
j=i

Mij =

m∑
i=1

Mi.(1.9)

M0 is an upper bound on the overall stochastic event rate. We will use these rates
to generate “event candidates.” Since we are overestimating the rates, some of these
candidates will be rejected. We define Kij as the stochastic event rate between bins
i and j, and we define K0 as the overall stochastic event rate:

Kij :=
∑
p∈πi

∑
q∈πj ,q>p

K(p, q),(1.10)

K0 :=

m∑
i=1

m∑
j=i

Kij =
∑
p∈π

∑
q∈π,q>p

K(p, q).(1.11)

The > operator between two particles, as in (1.11), refers to some ordering on P that
must guarantee that a particle with larger magnitude is greater than a particle with
smaller magnitude. From the definitions, M0 can be written in a form similar to K0:

Mij =
∑
p∈πi

∑
q∈πj ,q>p

Kup(r(p), r(q)),(1.12)

M0 =
∑
p∈π

∑
q∈π,q>p

Kup(r(p), r(q)).(1.13)

From (1.11) and (1.13), it is immediate that M0 ≥ K0, which is expected since M0 is
an overestimated event rate and K0 is the exact event rate.

2. Binned algorithms.

2.1. Binned SSA. Ignoring errors due to finite precision arithmetic and pseudo-
random number generation, the SSA developed by Gillespie generates an exact real-
ization of the underlying Markov process [5]. Unfortunately, the computation time
of SSA makes it prohibitively expensive for large, physically realistic problems. In
this section, we present an algorithm that enhances the efficiency of SSA without
sacrificing exactness.

Algorithm 1, called the “Binned Stochastic Simulation Algorithm” or “Binned
SSA,” is a novel approach to simulating a stochastic event model. The approach
is similar to SSA, except that it acts over bins of particles rather than individual
particles. Event rates are overestimated, so an accept-reject phase is necessary to
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1076 M. D. MICHELOTTI, M. T. HEATH, AND M. WEST

Algorithm 1. Binned SSA.

1: put initial particles into bins π1, . . . , πm

2: compute and store values of M0,M1, . . . ,Mm

3: t← 0
4: loop
5: Δt← ln(1/rand)/M0, where rand is a uniform random number from [0, 1)
6: t← t+Δt
7: if t > tfinal, break out of loop
8: randomly choose i from 1 to m with probability Mi/M0

9: randomly choose j from i to m with probability Mij/Mi

10: uniformly randomly choose two distinct particles p ∈ πi and q ∈ πj

11: with probability K(p, q)/Kup(ri, rj), process event for (p, q)
12: update values M0,M1, . . . ,Mm as needed
13: end loop

retain exactness. The time step Δt is chosen to sample an exponential distribution
with rate M0. Bin pair (πi, πj) is chosen with probability Mij/M0.

Like the original SSA, the Binned SSA generates an exact realization of the
Markov process. In other words, the probability distribution of the output of the
algorithm is the same as the probability distribution of the stochastic event model.
SSA was shown to select the time and particles involved in the next event from a
certain joint probability density function [5]. We will show that the same holds for
Binned SSA.

Lemma 2.1. For Binned SSA (Algorithm 1), let T be the time until the next event
is processed, and let P and Q be the particles chosen for that event in the canonical
order P < Q. Let φ(p, q, t) be the joint probability density function corresponding to
the random variables P , Q, and T . Then

φ(p, q, t) = K(p, q)e−K0t.

Thus, Binned SSA generates an exact realization of the underlying Markov process.
Proof. Binned SSA may take multiple loop iterations to generate an event. Let us

consider the outcome of a single loop iteration. Either a single event occurs between
two particles or no event occurs. Let X denote this outcome, and let g(x) be the
probability mass function for this random variable. Then X can be a particle pair
(p, q) with p < q, or X can be 0, denoting that no event occurred. Consider two
particles p ∈ πi and q ∈ πj where p < q. Particles p and q will generate an event in
one iteration if the bin pair (πi, πj) is chosen, the particle pair (p, q) is chosen from
this bin pair, and the accept-reject test for these particles passes. Thus,

g((p, q)) =
Mij

M0

1

θij

K(p, q)

Kup(ri, rj)
=

K(p, q)

M0
.

Since g must sum to 1,

g(0) = 1−
∑
p∈π

∑
q∈π,q>p

g((p, q)) = 1− K0

M0
.

Let f be the probability mass function corresponding to random variables P , Q,

D
ow

nl
oa

de
d 

02
/1

0/
15

 to
 1

30
.1

26
.1

52
.1

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BINNING FOR STOCHASTIC PARTICLE SIMULATIONS 1077

and Z, where Z denotes the number of loop iterations needed to process the event:

f(p, q, z) = g(0)z−1g((p, q)) =

(
1− K0

M0

)z−1
K(p, q)

M0
.

Summing over possible values, we can find the probabilities of obtaining a certain
particle pair or achieving a certain number of iterations. We obtain

Pr(P = p,Q = q) =
∞∑
z=1

f(p, q, z) =
K(p, q)

K0
,

Pr(Z = z) =
∑
p∈π

∑
q∈π,q>p

f(p, q, z) =

(
1− K0

M0

)z−1
K0

M0
.

Let φt be the probability density function for T . Recall that T is the sum of Z
independent random variables chosen from an exponential distribution with rate M0.
Also, note that Z follows a geometric distribution with rate K0/M0. From this, we
conclude that T follows an exponential distribution with rate K0 [13]:

φt(t) = K0e
−K0t.

Since P and Q are independent from Z and T , we obtain φ by multiplication.
Thus,

φ(p, q, t) = Pr(P = p,Q = q)φt(t) = K(p, q)e−K0t,

which is the desired result.
Theorem 2.2. Binned SSA (Algorithm 1) generates an exact realization of the

underlying Markov process.
Proof. Consider a superiteration of the loop in Algorithm 1 to consist of all

loop iterations until an event is processed. Lemma 2.1 shows that one superiteration
of Binned SSA is equivalent to one loop iteration of SSA. Both algorithms iterate
until the simulation time has elapsed. Thus, SSA and Binned SSA are equivalent in
the sense that they have the same probability of achieving any given result. Since
SSA generates an exact realization of the underlying Markov process, so does Binned
SSA.

Since the particle state is constantly changing, it is difficult to evaluate the overall
running time of either SSA or Binned SSA. Given the current state π, we can compute
the expected computation time per event for the immediate future. This value will
be denoted ξ. Let ξO be the expected computation time per event for original SSA,
and let ξB be the expected computation time per event for Binned SSA.

SSA normally takes O(|π|) time to process an event. A single loop iteration of
Algorithm 1 requiresO(m) time, wherem is the number of bins. The expected number
of loop iterations until an event is reached is 1/Eff, where we define the efficiency as
the expected acceptance rate of event candidates:

(2.1) Eff =
K0

M0
.

Thus, ξO = O(|π|) and ξB = O(m/Eff). We can typically achieve Eff > 1/2 and
m
 |π|.
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Fig. 2.1. Computation time per event for Test Problem 1 (see Appendix A), comparing original
SSA with Binned SSA.

Figure 2.1 compares the computation times of SSA and Binned SSA using Test
Problem 1, which uses the additive kernel and has a known analytic solution (descrip-
tions of this and other test problems can be found in Appendix A). As the number
of particles increases, the computation time per event for SSA increases linearly, as
predicted. However, we do not need to increase the number of bins as the number
of particles increases, so the computation time per event for Binned SSA remains
roughly constant. Binned SSA outperforms SSA because it does not need to iterate
through the list of particles to find the next event pair.

The decrease in startup time is also noteworthy. SSA requires computing K0

before iterations begin, which is an O(n2) operation, where n is the initial number
of particles (for this and other notation, see Appendix A). Binned SSA requires
computing only M0, an O(m2) operation, which is much faster since m
 n.

Figure 2.2 compares the accuracy of SSA and Binned SSA. We observe that both
algorithms have the same accuracy, as expected from Theorem 2.2. The error bars in
Figure 2.2 correspond to 95% confidence intervals based on Student’s t-test, as is the
case with all error bars in this paper.

2.2. Binned Tau-Leaping. In 2001, Gillespie published the Tau-Leaping al-
gorithm, an approximate accelerated version of original SSA [7]. Tau-Leaping was
developed for simulating chemically reacting systems, however, not for particle sim-
ulations. The main difference is that there is usually a small, discrete set of possible
reactants and reactions in chemical simulations, whereas the space of possible parti-
cles in a particle simulation is infinite and continuous. Consequently, Tau-Leaping is
not directly applicable to particle simulations, but it can be applied to particle simu-
lations if we first put the particles into bins. This is the approach currently used by
the PartMC software [15]. In this section, we will introduce this Binned Tau-Leaping
algorithm and analyze its performance.
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Fig. 2.2. Relative error for Test Problem 1, comparing original SSA with Binned SSA.

Algorithm 2. Binned Tau-Leaping Algorithm.

1: put initial particles into bins π1, . . . , πm

2: t← 0
3: while t ≤ tfinal do
4: for each bin pair (πi, πj) with i ≤ j do
5: c← sample Poisson distribution with mean τMij

6: for c iterations do
7: uniformly randomly choose two distinct particles p ∈ πi and q ∈ πj

8: with probability K(p, q)/Kup(ri, rj), process event for (p, q)
9: end for

10: end for
11: t← t+ τ
12: end while

Binned SSA is essentially the same as applying original SSA to bins of particles
instead of individual particles. Likewise, Binned Tau-Leaping is essentially the same
as applying Tau-Leaping to bins of particles instead of individual particles. Since bins
are discrete and relatively few in number, Tau-Leaping is applicable and efficient.

Algorithm 2 presents Binned Tau-Leaping. This algorithm uses a predetermined
time-step size τ . For each time step, we iterate over all pairs of bins (i, j), where i ≤ j,
and generate a certain number of event candidates from these bins. The number of
event candidates is chosen from a Poisson distribution with mean τMij . We accept
or reject these event candidates as we did in Binned SSA. All events processed within
a given time step, though ordered, are still deemed to have occurred at time t. Once
we have considered all event candidates for this time step, we increment time by τ
and proceed to the next time step.

One of the main benefits of the original Tau-Leaping algorithm is that it can
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process multiple events at once. However, Binned Tau-Leaping must process one event
at a time, because each particle is unique and each event requires its own accept-
reject test. Thus, Binned Tau-Leaping does not exhibit the dramatic performance
improvement over Binned SSA that Tau-Leaping enjoys over SSA.

Unlike Binned SSA, Binned Tau-Leaping is not exact. Furthermore, the accuracy
of Binned Tau-Leaping may be affected by the positions of the bin boundaries if τ
is large. However, we can show that Binned Tau-Leaping converges to the correct
behavior as τ goes to zero.

Lemma 2.3. For Binned Tau-Leaping (Algorithm 2), let T be the time until the
next events occur, and let Λ be the set of events that occur in that time step. Let
Φτ (λ, t) be the probability that Λ = λ and T > t. Then

Φτ ({(p, q)}, t) = K(p, q)

K0
e−tK0 + O(τ),

where τ is the time-step size of the Tau-Leaping algorithm.
Proof. Let f1(i, j) be the probability that an event candidate generated from bin

pair (i, j) is accepted. To calculate this, we must consider all possible event candidates
between these bins. Thus,

f1(i, j) =
∑
p∈πi

∑
q∈πj ,q>p

1

θij

K(p, q)

Kup(ri, rj)
=

Kij

Mij
.

Consider the outcome of a single time step. Assuming no events occur from other
bin pairs, let f2(i, j) be the probability that all event candidates generated for bin pair
(i, j) are rejected. The number of event candidates comes from a Poisson distribution,
so we must consider all outcomes of the Poisson distribution. Therefore,

f2(i, j) =

∞∑
k=0

(τMij)
k

k!
e−τMij(1− f1(i, j))

k = e−τMijeτMij(1−f1(i,j)) = e−τKij .

Let f3 be the probability that all event candidates for a single time step are
rejected. We obtain

f3 =

m∏
i=1

m∏
j=i

f2(i, j) =

m∏
i=1

m∏
j=i

e−τKij = e−τK0.

Let f4(p, q) be the probability that a time step generates event (p, q) and no other
events. It is difficult to compute f4(p, q) exactly, but we can obtain useful upper and
lower bounds. Let U be an upper bound on Mij for all i, j. This bound should be
valid both before and after the event (p, q). Choose i and j such that p ∈ πi and
q ∈ πj . For a lower bound on f4, we consider a lower bound on the probability that
all bin pairs other than (i, j) obtain a zero Poisson number, that bin pair (i, j) obtains
a Poisson number of 1, and that the event candidate (p, q) is chosen and accepted.
Therefore,

f4(p, q) ≥ (e−τU )m
2

τMije
−τMij

1

θij

K(p, q)

Kup(ri, rj)
= τK(p, q)e−τ(Um2+Mij).

For an upper bound on f4, we consider the probability that bin pair (i, j) obtains a
Poisson number of 1 and that the event candidate (p, q) is chosen and accepted, plus
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the probability that bin pair (i, j) obtains a Poisson number greater than 1. Thus,

f4(p, q) ≤ τMije
−τMij

1

θij

K(p, q)

Kup(ri, rj)
+ (1− (1 + τMij)e

−τMij )

= τK(p, q)e−τMij + (1− (1 + τMij)e
−τMij ).

From these two bounds, we observe

f4(p, q) = τK(p, q) +O(τ2).

Let f5(p, q) be the probability that Λ = {(p, q)}. This is the probability that a
time step generates only event (p, q) given that the time step generates at least one
event. We obtain

f5(p, q) =
f4(p, q)

1− f3
=

τK(p, q) +O(τ2)

1− e−τK0
=

K(p, q)

K0
+O(τ).

Let f6(t) be the probability that T > t. This is the probability that all of the
�t/τ� time steps before t produce no events. Therefore,

f6(t) = f
�t/τ�
3 = (e−τK0)�t/τ� = e−tK0 +O(τ).

Since Λ and T are independent, we obtain Φτ by multiplying f5 and f6:

Φτ ({(p, q)}, t) = f5(p, q)f6(t) =

(
K(p, q)

K0
+O(τ)

)
(e−tK0 +O(τ))

=
K(p, q)

K0
e−tK0 +O(τ).

This is the desired result.
Theorem 2.4. For a given initial particle distribution π0 and a given number of

events v, let P ,Q,T be vectors of random variables corresponding to the first v events
generated from SSA. Let P τ ,Qτ ,T τ be vectors of random variables corresponding to
the first v events generated from Binned Tau-Leaping for a given τ . Define

D(p, q, t) := Pr(P = p,Q = q,T > t),

Dτ (p, q, t) := Pr(P τ = p,Qτ = q,T τ > t).

Then,

Dτ (p, q, t) = D(p, q, t) +O(τ).

Note that t can be chosen to span the duration of the simulation or longer. Thus, the
outcome of Binned Tau-Leaping converges in distribution to the outcome of Binned
SSA at a rate of O(τ).

Proof. Define Φ(p, q, t;π) as the probability of generating an event P = p,Q =
q, T > t using SSA with a given particle distribution π. We know this to be

Φ(p, q, t;π) =
K(p, q)

K0(π)
e−tK0(π).

In the above equation, K0 is written as a function of π. Let pi, qi, ti denote the ith
elements of p, q, t. Let π1, . . . , πv be the resulting particle distributions after each of
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the events (p1, q1), . . . , (pv, qv). To obtain D, we multiply the values of Φ for each
event:

D(p, q, t) =
v∏

i=1

Φ(pi, qi, ti;πi−1).

Similarly, from Lemma 2.3 we have an expression Φτ ({(p, q)}, t;π) for the probability
of generating a sole event P = p,Q = q, T > t using Binned SSA with a given particle
distribution π (the value π is now written as an explicit parameter):

Φτ ({(p, q)}, t;π) = K(p, q)

K0(π)
e−tK0(π) +O(τ) = Φ(p, q, t;π) +O(τ).

The probability that Φτ gives a set of events λ with size greater than 1 is O(τ). This
can be observed by summing Φτ over sets of events λ with size 1:∑

p∈π

∑
q∈π,q>p

Φτ ({(p, q)}, 0;π) = 1 +O(τ).

We can now obtain Dτ by multiplying the values of Φτ for each event, taking into
account the O(τ) possibility of having multiple events in any time step. We obtain

Dτ (p, q, t) =

v∏
i=1

Φτ ({pi, qi}, ti;πi−1) +O(τ)

=
v∏

i=1

Φ(pi, qi, ti;πi−1) +O(τ)

= D(p, q, t) +O(τ).

This is the desired result.
It should be noted that, like Tau-Leaping, Binned Tau-Leaping becomes exact in

the limit τ → 0, but it requires an infinite amount of computation time in that same
limit. The value of τ controls the trade-off between accuracy and computation time.

2.3. Comparison of binned algorithms. Tau-Leaping is usually dramatically
faster than SSA, so one might suspect that Binned Tau-Leaping will be dramatically
faster than Binned SSA, but this is not usually true. This is because Binned Tau-
Leaping must process one event at a time, whereas Tau-Leaping may process many
events at once. Thus, it is less clear whether this “approximate accelerated algorithm”
is actually faster in the binned formulation.

Like before, we will characterize the cost of Binned Tau-Leaping as the expected
computation time per event ξ, which will be compared with that of Binned SSA. In
this comparison, we will assume that τ is chosen sufficiently small that the results are
sufficiently accurate. Let ξτ be the time per event for Binned Tau-Leaping, and let
ξB be the time per event for Binned SSA.

Each time step of Binned Tau-Leaping has an expected running time of O(τM0+
m2). The τM0 term comes from the expected number of event candidates that are
generated, and the m2 term comes from iterating over all pairs of bins. Each time step
is expected to generate τK0 events, so we conclude that ξτ = O(1/Eff +m2/(τK0)).

Recall that ξB = O(m/Eff). It is not clear from this big-O analysis whether ξB
or ξτ will be smaller in a practical simulation, and by how much. These questions
depend on many factors involved in a specific problem.
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Fig. 2.3. Computation time per event for Test Problem 2 with varying number of bins, com-
paring Binned SSA with Binned Tau-Leaping for varying τK0 (coagulations per time step), which
is controlled by varying τ . Curves are based on models in (2.2), (2.3), (2.4), and (3.5). Plotted
symbols are observed values from computer simulations.

For a more precise analysis, we use the following models for the expected compu-
tation time per event:

ξB :=
α1

Eff
+ α2 +

α3 + α4m

Eff
,(2.2)

ξτ :=
α1

Eff
+ α2 +

α5

τK0

m(m+ 1)

2
,(2.3)

where α1, . . . , α5 are constants corresponding to the computational time to perform
the following operations:

• α1: generate an event candidate and determine whether to accept it. This
involves randomly choosing a pair of particles from two bins and evaluating
the kernel.
• α2: process an event.
• α3 +α4m: randomly choose a bin pair, update Mi values, and increase time.
• α5: iterate to the next bin pair and sample a Poisson distribution.

Figure 2.3 plots ξB and ξτ for Test Problem 2, a typical coagulation problem using
the Brownian kernel. The time parameter α1 was estimated using the computation
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Table 2.1

Values of model parameters.

α1 α2 α3 α4 α5

Time( s) 6.87 · 10−7 7.5 · 10−8 4.6 · 10−8 4.5 · 10−9 3.0 · 10−8

time required to evaluate the Brownian kernel. The remaining parameters were fit
to match the observed data in Figure 2.3, and their values are listed in Table 2.1.
Because evaluation of the Brownian kernel is a relatively expensive operation, α1

masks most of the effects of α2 and α3. In section 3.1, we will discuss how to model
Eff as a function of the number of bins.

Efficiency is always between 0 and 1. Thus, there is a lower bound on ξ for either
algorithm:

(2.4) ξ ≥ α1 + α2,

as is to be expected. The computation time per event is at least the cost of choosing
two particles, evaluating the kernel, and processing an event. This lower bound is
plotted in Figure 2.3. It is a valid lower bound regardless of how bin boundaries are
chosen.

Now ξτ depends on τK0 (the expected number of coagulations per time step), but
ξB does not. The value ξB depends on the specific particle distribution only through
Eff. As we will see in section 3.1, Eff can be insensitive to the particle distribution
when many logarithmically spaced bins are used. However, K0 is sensitive to the
particle distribution. Thus, the optimal number of bins for Binned Tau-Leaping may
vary over the course of the simulation, whereas the optimal number of bins for Binned
SSA remains roughly constant.

Keep in mind that changing τ affects the accuracy of Binned Tau-Leaping. De-
creasing τ will decrease the error in the simulation and increase ξτ . Binned SSA, on
the other hand, incurs no error from time discretization.

Multiple potential sources of error arise in such a stochastic simulation:

εV ≤ ετ + εn + εu,

where εV is the overall error of the simulation, ετ is the discretization error due to the
choice of time-step size τ , εn is the modeling error due to using fewer particles than
would be present in a physically realistic system, εu is the error incurred due to the
stochastic nature of the simulation, and u is the number of times the simulation is
repeated to decrease stochastic error. See Appendix A for formal definitions of these
quantities.

When using Binned SSA instead of Binned Tau-Leaping, ετ is zero. As we can
see from Figure 2.3, Binned SSA is never much more expensive than Binned Tau-
Leaping (assuming a good choice for the number of bins), and it may be the case that
Binned Tau-Leaping is notably more expensive than Binned SSA, depending on the
value of τ . Thus, using Binned SSA simultaneously eliminates all doubt about ετ and
guarantees low overhead in computation time.

Figure 2.4 compares the two algorithms applied to Test Problem 3 for various
values of n and τ . This test problem involves particles made up of two different
species. It is a multi-time-scale problem, which allows Binned SSA to outperform
Binned Tau-Leaping with a fixed τ . Using Tau-Leaping with an adaptively chosen
τ might be competitive with Binned SSA for this example. However, it still cannot
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Fig. 2.4. Error vs. computation time for Test Problem 3 comparing Binned SSA with Binned
Tau-Leaping, with n varying from 104 to 107 to produce curves.
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Fig. 2.5. Error vs. computation time for Test Problem 4 comparing Binned SSA with Binned
Tau-Leaping, with u varied from 1 to 104 to produce curves.

significantly outperform Binned SSA, as we observe in Figure 2.3. Furthermore, it
requires developing a good heuristic that chooses τ to ensure that ετ is small for a
specific application. This is not necessary for Binned SSA, because ετ is zero.

Let us consider holding n fixed and varying u. The computation time required
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increases linearly with both n and u, and εV decreases according to the law of large
numbers with both n and u. However, there are a few reasons why we might choose
to increase u rather than n. If the physically realistic system that we want to model
is small enough that we can use a physically realistic value of n in our simulation,
then there is no point in increasing n further; we would need to increase u in order to
increase accuracy. If we have a parallel computer, we can run multiple simulations at
the same time and accumulate the results, essentially increasing u without increasing
the computation time. When choosing n, we are also limited by the amount of
memory on the computer, as well as the nonconstant nature of memory access time
as n increases.

Figure 2.5 compares the two algorithms applied to Test Problem 4 for various
values of u and τ . In this example, εn is zero. Test Problem 4 is similar to Test
Problem 2 except that it uses fewer particles and simulates a longer time. There
are certain desired levels of accuracy for which Binned SSA outperforms Binned Tau-
Leaping regardless of the value of τ . Furthermore, even at the lowest level of accuracy,
with u = 1 and the largest τ , Binned SSA is only slightly more expensive than Binned
Tau-Leaping.

3. Binning strategies.

3.1. Analysis of static binning. Accuracy is insensitive to changes in bin
boundary positions. For Binned SSA, accuracy is completely independent of changes
in these boundaries. However, the computation time of either algorithm is greatly
affected by the bin boundary positions. Thus, we want to choose bin boundaries to
minimize ξ, the expected computation time per event.

The easiest scheme to implement is “static” binning, in which bin boundaries
remain unchanged throughout the course of the simulation. With a static binning
scheme, it is important to make a good choice of bin boundaries at the outset. Our
objective is to minimize ξ. Unfortunately, ξ depends not only on bin boundary lo-
cations, but also on how many particles are in each bin. Thus, even with a static
binning scheme, the value of ξ changes over the course of the simulation as the set of
particles π changes.

Because of this, it is desirable to choose a binning scheme that is effective regard-
less of the set of particles π. Let us require π ⊆ R(νlo, νhi), where νlo and νhi are
known values that will serve as the lowest and highest bin boundaries. We are then
free to choose interior bin boundaries ν1, . . . , νm−1, yielding a set of m bins that we
write in vector format,

(3.1) r := (r1, . . . , rm).

The notation |r| denotes the number of bins in r. We will express values such as ξ as
functions of r and π.

From (2.2) and (2.3), we can see that for fixed |r| and π, minimizing ξ(r, π) is
the same as maximizing Eff(r, π). Since the particle state is constantly changing, it
is desirable to maximize the worst-case efficiency:

(3.2) W (r) := inf
π

Eff(r, π).

It is not clear from (3.2) how to compute W (r). Fortunately, Theorem 3.1 provides
a way to do so.
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Theorem 3.1. Let Kmin(ri, rj) := inf{K(p, q) : p ∈ ri, q ∈ rj}. Then W (r) from
(3.2) is given by

(3.3) W (r) = min

{
Kmin(ri, rj)

Kup(ri, rj)
: 1 ≤ i ≤ j ≤ m

}
.

Proof. Let W ′(r) be the right-hand side of (3.3),

W ′(r) := min

{
Kmin(ri, rj)

Kup(ri, rj)
: 1 ≤ i ≤ j ≤ m

}
.

We will prove that W ′(r) = W (r).
Given a set of particles π, note that W ′(r) ≤ K(p, q)/Kup(r(p), r(q)) for all

p, q ∈ π. Thus,

W ′(r) ≤
(∑

p∈π

∑
q∈π,q>p

K(p, q)

)/(∑
p∈π

∑
q∈π,q>p

Kup(r(p), r(q))

)
=

K0(π)

M0(r, π)

= Eff(r, π).

Because W (r) is an infimum of efficiencies, we have W ′(r) ≤W (r).
Choose bins i, j that achieve the minimum in the equation forW ′(r). Then choose

sequences p1, p2, . . . ∈ ri and q1, q2, . . . ∈ rj that achieve the infimum in the equation
for Kmin(ri, rj):

W ′(r) =
Kmin(ri, rj)

Kup(ri, rj)
= lim

k→∞
K(pk, qk)

Kup(ri, rj)
= lim

k→∞
Eff(r, {pk, qk}).

This is a sequence of efficiencies that converges to W ′(r). Thus, W ′(r) ≥W (r).
We have shownW ′(r) ≤W (r) andW ′(r) ≥W (r), and thusW ′(r) = W (r).
Let l(m) denote a vector of m logarithmically spaced bins. Formally, the entries

of l(m) are

(3.4) li(m) = R

(
νlo

(
νhi
νlo

)(i−1)/m

, νlo

(
νhi
νlo

)i/m
)
.

Figure 3.1 plots the worst-case efficiencyW (l(m)) for varyingm. Observed efficiencies
from computer simulations are also plotted, which gives an indication of the difference
between worst-case efficiency and “typical” efficiency.

We have determined the worst-case efficiency for a logarithmic binning scheme,
but we have not justified that logarithmic binning is a good choice. The following
theorem will give an upper bound on W regardless of the binning scheme used. We
can then compare the efficiency of logarithmic binning with this upper bound.

Theorem 3.2. Assume that the kernel is continuous and Kup is a tight upper
bound. Let Wμ := max{W (r) : |r| = μ}. Then for any set of bins r and any positive
integer μ,

W (r) ≤W 1/
|r|/μ�
μ .

Proof. This result holds trivially for μ ≥ |r|, so assume μ < |r|. Let c = �|r|/μ�.
Let ρ be a set of μ bins with elements

ρi :=

min{ci,|r|}⋃
j=ci−c+1

rj .
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100 101 102 103

Number of Bins m

0.0

0.2

0.4

0.6

0.8

1.0
E
ffi
ci
en

cy
E
ff

observed (log bins)

worst case upper-bound

worst case (log bins)

Fig. 3.1. Efficiency for Test Problem 2. Circles are observed efficiencies averaged over duration
of simulation using Binned SSA with logarithmically spaced bins l(m). Lower curve is worst-case
efficiency W (l(m)) computed from Theorem 3.1. Middle curve is upper bound on W regardless of
bin spacing, computed from Theorem 3.2 using μ = 1 to 4.

Consider any pair of bins y ∈ {ρi × ρj : 1 ≤ i ≤ j ≤ μ}. Then, choose a
sequence of bin pairs x1, . . . , xc ∈ {ri × rj : 1 ≤ i ≤ j ≤ |r| and (ri × rj) ⊆ y}
such that Kmin(x1) = Kmin(y) and Kup(xc) = Kup(y). We also require that for any
xk = ri × rj and xk+1 = ri′ × rj′ , |i − i′| ≤ 1 and |j − j′| ≤ 1. Since y is made of at
most a c× c square of bin pairs from r, it is possible to find such a sequence.

From Theorem 3.1, we know Kmin(xk) ≥ W (r)Kup(xk). Also, note that xk ∩
xk+1 �= ∅. Thus, Kup(xk) ≥ Kmin(xk+1). Applying these two inequalities repeatedly
gives

Kmin(y) = Kmin(x1) ≥W (r)cKup(xc) = W (r)cKup(y).

Since this holds for all bin pairs y, we know from Theorem 3.1 that Wμ ≥ W (ρ) ≥
W (r)c. Thus, W (r) ≤W

1/c
μ .

Corollary 3.3. Assuming that the kernel is continuous and Kup is a tight upper
bound, then

W (r) ≤
(
Kmin(R(νlo, νhi))

Kup(R(νlo, νhi))

)1/|r|
.

Proof. Apply Theorem 3.2 with μ = 1.
Corollary 3.4. For the additive kernel given in (A.5), logarithmic binning

achieves optimal worst-case efficiency:

W (l(m)) = Wm =

(
νlo
νhi

)1/m

.

Proof. Apply Theorem 3.1 to obtain an expression for W (l(m)) and notice that
it is the same as the bound in Corollary 3.3.
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As seen in Figure 3.1, W (l(m)) for the Brownian kernel comes close to the the-
oretical upper bound on W . Also, Corollary 3.4 tells us that logarithmic binning is
optimal for the additive kernel. These facts justify our use of logarithmic binning.

To model typical efficiency, note that the observed efficiency falls roughly along
the curve

√
W (l(m)). This is not guaranteed to be a good approximation for every

possible particle distribution, but it seems reasonable for modeling purposes, e.g.,

(3.5) Eff(l(m), π) ≈
√
W (l(m)) ≈

√
(5 · 10−27)1/m for Test Problem 2.

In Figure 3.1, the worst-case efficiency approaches 1 as the number of bins ap-
proaches infinity, but this is not guaranteed to happen. First, recall from (1.5) that
Kup is not necessarily a tight upper bound, which means that the Kmin/Kup ratios
may not converge to 1. Even if Kup is a tight upper bound, the kernel may depend
on more than just the magnitude of each particle, in which case the limit would be

(3.6) lim
m→∞W (l(m)) = min

{
K(p1, q1)

K(p2, q2)
: |p1| = |p2|, |q1| = |q2|

}
.

3.2. Adaptive binning strategies. A binning scheme chooses r with the goal
of minimizing ξ(r, π), the expected computation time per event. Thus far, we have
considered only binning schemes that do not change over time. Since the particle set
π is changing over time, we cannot optimize the bin structure for a particular particle
distribution. An adaptive binning scheme could potentially take advantage of changes
in the particle distribution to increase efficiency.

An adaptive binning scheme changes r in response to changes in π. We will allow
two operations for changing r: bin splitting and bin merging. Bin splitting splits a
single bin into two bins. Bin merging combines two consecutive bins into one bin. A
split or merge operation is performed only if it decreases the value of ξ(r, π).

Suppose bins k and k+1 were merged. Let r(M) be the new bins after this merge.
Formally,

(3.7) r(M) := (r1, . . . , rk−1, s, rk+2, . . . , rm),

where

s := rk ∪ rk+1.

Computing ξ(r(M), π)− ξ(r, π) is expensive because it requires knowing the value of
K0(π). The expression K0(π)(ξ(r

(M), π)− ξ(r, π)) is easier to compute, because the
K0(π) terms cancel out. If this value is negative, then the merge will decrease the
expected computation time per event.

The exact expression for ξ depends on which algorithm is used, along with the
coefficients α1, . . . , α5 determined by the specific application and computer. Note
from (2.2) and (2.3) that ξ depends only on m, M0, K0, and τ . As we have already
observed, the K0 terms cancel out in the expression K0(π)(ξ(r

(M), π)− ξ(r, π)). The
time-step size τ is a known value, and m decreases by one during the merge. The
only difficult term to compute is

(3.8) ΔM := M0(r
(M), π)−M0(r, π).

Expanding this expression, we obtain

(3.9) ΔM =

⎛
⎝κ1 + κ2(0) + κ2(1) +

m∑
i=1;i�=k,k+1

(κ3(i, 0) + κ3(i, 1))

⎞
⎠ ,
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where

κ1 := |πk| |πk+1|(Kup(s, s)−Kup(rk, rk+1)),

κ2(j) :=
1

2
|πk+j |(|πk+j | − 1)(Kup(s, s)−Kup(rk+j , rk+j)),

κ3(i, j) := |πi| |πk+j |(Kup(ri, s)−Kup(ri, rk+j)).

In the above equations, the partition π1, . . . , πm corresponds to the original bins r.
The same approach works to determine whether splitting bin k is beneficial. How-

ever, when performing a split, we must choose a pivot location γ at which to split.
Let r(S) be the new bins after this split. Formally,

(3.10) r(S) := (r1, . . . , rk−1, s1, s2, rk+1, . . . , rm),

where

s1 := rk ∩R(νlo, γ),

s2 := rk ∩R(γ, νhi).

We want to know the value of K0(π)(ξ(r
(S), π)− ξ(r, π)). As before, the only difficult

term to compute is

(3.11) ΔS := M0(r
(S), π)−M0(r, π).

Expanding this expression, we obtain

(3.12) ΔS = −
⎛
⎝κ4 + κ5(1) + κ5(2) +

m∑
i=1;i�=k

(κ6(i, 1) + κ6(i, 2))

⎞
⎠ ,

where

κ4 := |πk ∩ s1| |πk ∩ s2|(Kup(rk, rk)−Kup(s1, s2)),

κ5(j) :=
1

2
|πk ∩ sj |(|πk ∩ sj | − 1)(Kup(rk, rk)−Kup(sj , sj)),

κ6(i, j) := |πi| |πk ∩ sj |(Kup(ri, rk)−Kup(ri, sj)).

Computing ΔS is less straightforward than computing ΔM because we do not know
the number of particles in the two portions of πk in advance. These values appear as
|πk ∩ s1| and |πk ∩ s2| in the above equations. Furthermore, if Kup is expensive to
compute, the program may be implemented such that the values of Kup are stored in
an array ahead of time. Thus, the values of the Kup expressions involving s1 or s2
would not be known without extra work.

A few options are available to overcome these difficulties. The pivot γ could be
chosen in advance when the bin is first created. For example, γ could be the geometric
(or arithmetic) mean of the two boundaries of the bin. This way, we can keep track
of how many particles are in each portion of the bin as they are added. If needed, the
additional Kup values could be stored ahead of time.

A second option is to approximate the number of particles in each portion of the
bin by random sampling. The Kup values can also be approximated. This allows for
more flexibility in the choice of pivot γ. For example, the pivot could be chosen to be
an approximate median of the particles in πk.
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Fig. 3.2. Computation time per event for Test Problem 3 using Binned SSA. Value of ξ is
computed precisely using (2.2) at time t = 0. Initial distribution π was sampled only once. Adaptive
binning scheme as described in section 3.2 is used, always performing most beneficial split or merge
first. Uniform-adaptive and log-adaptive curves are paths that adaptive binning followed to arrive
at respective destinations. Uniform-adaptive uses arithmetic mean of bin boundaries as pivot γ.
Log-adaptive uses geometric mean of bin boundaries as pivot γ. Static binning schemes for various
m are also plotted for reference. Lower bound is from (2.4).

Now that we know how to test whether a split or merge is beneficial, we need to
decide when to perform these tests. Determining whether a split or merge of bin k
will be beneficial requires O(m) time. Thus, checking all possible splits and merges
requires O(m2) time. One approach is to check all splits and merges periodically.
This could be done every O(m2) event candidates in order to mask the cost of these
checks.

Figure 3.2 shows the paths adaptive binning takes in attempting to minimize
ξ. It demonstrates adaptive binning with both arithmetic pivots and geometric piv-
ots, referred to as uniform-adaptive binning and log-adaptive binning, respectively.
Uniform-adaptive binning requires more splits and merges than log-adaptive binning,
and it does not reach as low a cost as log-adaptive binning does. This further rein-
forces our earlier conclusion that logarithmic binning and logarithmic refinement of
bins are good choices.

We observe that uniform-adaptive binning works considerably better than uniform-
static binning, improving ξ by over two orders of magnitude. Log-adaptive binning
achieves only a slightly better ξ than log-static binning. As we see from Figure 2.3,
Binned SSA and Binned Tau-Leaping with log-static binning come close to the theo-
retical lower bound if the number of bins is chosen appropriately. This lower bound
also applies to adaptive schemes. Thus, there is not much room for improvement.
The overhead of adaptivity may or may not be worthwhile, depending on the kernel
and the specific application.
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4. Conclusion. In this paper, we have presented efficient new algorithms for
simulating particle distributions evolving by stochastic events. In order to handle
the multiscale nature of the particles efficiently, these algorithms aggregate parti-
cles of similar size into bins. We introduced Binned SSA, an algorithm that retains
the exactness of Gillespie’s Stochastic Simulation Algorithm but is much more ef-
ficient computationally for highly multiscale problems. We also introduced Binned
Tau-Leaping, a variation of Gillespie’s Tau-Leaping algorithm modified for use with
particle simulations. Unlike Binned Tau-Leaping, Binned SSA does not require the
user to choose a time-step size τ . If it is difficult to choose the value of τ (fixed or
adaptively) needed to achieve a desired level of accuracy, then Binned SSA would be
a good alternative. Furthermore, there are cases in which Binned SSA outperforms
Binned Tau-Leaping regardless of the value of τ chosen.

The running time of either of the binned algorithms is largely determined by the
placement of bin boundaries. For a static binning scheme, we showed that logarithmic
binning is effective for both the Brownian coagulation kernel and the additive kernel.
Adaptive binning can take advantage of the current particle distribution to increase
efficiency. The effectiveness of adaptivity will vary depending on the specific problem.

The original formulation of SSA is costly for multiscale problems. By applying
logarithmic particle binning to this algorithm, it becomes much more efficient and
is able to compete with other algorithms in computational speed while retaining the
exactness of the original algorithm.

Appendix A. Test problems and methodology.

A.1. Test problems. In our model problem, the simulation events are aerosol
particle coagulations. If two particles coagulate, that means they coalesce to form a
single, larger particle with volume equal to the sum of the volumes of the coagulating
particles. Certain test problems of this type are referred to throughout this paper.
Parameters required to specify each test problem include the following:

• N : number of particles initially present in a physically realistic model.
• n: number of computational particles initially present in the simulation.
• m: number of bins used in the simulation.
• νlo and νhi: lowest and highest bin boundaries. Bin boundaries νlo = ν0 <
ν1 < · · · < νm = νhi are spaced logarithmically unless otherwise specified.
• ν′hi: upper bound on initial particle distribution.
• F (v): probability density function for initial particle distribution, where v is
particle volume.
• K: coagulation kernel, which determines the stochastic rate at which events
occur between two given particles.
• C: initial concentration, number of particles per unit volume.
• tfinal: total time period simulated.
• |V |: number of histogram buckets to represent the solution (see section A.2
below). Histogram buckets are spaced logarithmically spanning νlo to νhi
unless otherwise specified.
• u: number of times simulation is repeated to decrease stochastic error by
averaging results.

The magnitude operator | · | evaluates the volume of a given particle. Along
with the volumes of two given particles, the kernel K may depend on the densities
of the two particles and the volume of the simulation domain, denoted by vol. All
particles have the density of water, 1000 kg/m3. The volume of the simulation domain
is assumed to remain the same throughout the course of the simulation. This volume
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is determined by n and C,

(A.1) vol =
n

C
.

The kernel K is usually the Brownian coagulation kernel Kbrown [11]. We define
this kernel as

(A.2) Kbrown(p, q) :=
4π (Rp + Rq) (Dp +Dq) vol

−1

Rp+Rq

Rp+Rq+
√

δ2p+δ2q
+

4(Dp+Dq)√
v̄2
p+v̄2

q(Rp+Rq)

,

where

δp :=
(2Rp + λp)

3 − (4R2
p + λ2

p

)3/2
6Rpλp

− 2Rp,(A.3)

λp :=
8Dp

πv̄p
.(A.4)

In the above equations, Rp denotes the radius of p, Dp denotes the particle diffusion
coefficient of p, and v̄p denotes the thermal speed of particle p in air. The open source
software package PartMC provides an implementation of the Brownian kernel [15].

Along with the Brownian kernel, the additive kernel

(A.5) Kadd(p, q) =
|p|+ |q|

vol
· 1.0 s−1

is used for one of the test problems.
The initial particle distribution comes from sampling the probability density func-

tion F (v), where v is the volume of the particle in cubic meters. These mostly come
from a log-normal distribution

(A.6) G(μ, σ; v) :=
1

vσ
√
2π

exp

(
− (ln v − μ)2

2σ2

)
.

The Dirac delta function centered at zero is also used and is denoted by δ(v). If a
volume sampled from the distribution falls outside (νlo, ν

′
hi), then it is discarded and

resampled.
Parameters for the test problems referenced throughout this paper are given in

Table A.1 unless otherwise noted.

A.2. Testing methodology. The result of a simulation is expressed as a histo-
gram. Particles fall into histogram buckets based on their volumes. Unless otherwise
specified, the value of each histogram bucket is the number of particles in that bucket
divided by n, the total number of particles initially present in the simulation. This
histogram uses data only from the final simulation time, t = tfinal.

We represent the histogram as a vector of real numbers V (τ, n, u), where τ is the
size of the time step (τ = 0 indicates that Binned SSA was used rather than Binned
Tau-Leaping), n is the number of particles initially present in the simulation, and
u is the number of times the simulation is repeated to decrease stochastic error by
averaging results (u =∞ indicates that the expected value is used, i.e., V (τ, n,∞) :=
E[V (τ, n, 1)]).

Let N be the number of particles initially present in the physically realistic model
that we wish to simulate. Due to limitations on computational resources, the number
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Table A.1

Parameters for test problems.

Test Problem 1 Test Problem 2

N ∞ -

n 10000 1.5 · 105
m 10 40

νlo (m3) 8 · 10−19 4.189 · 10−30

νhi (m3) 1 · 10−14 5.236 · 10−7

ν′hi (m3) 1 · 10−14 4.189 · 10−9

F (v) δ(v − 1 · 10−18 m3) G(−40.82, 6.908; v)

K Kadd Kbrown

C (m−3) 1 · 1015 1 · 1010
tfinal ( s) 1000 175.8

|V | ∞ -

u 1 1

Test Problem 3 Test Problem 4

N 1 · 107 1000

n 15000 1000

m 40 40

νlo (m3) 4.189 · 10−30 4.189 · 10−30

νhi (m3) 5.236 · 10−7 5.236 · 10−7

ν′hi (m3) 4.189 · 10−9 4.189 · 10−9

F (v) see description G(−40.82, 6.908; v)

K Kbrown Kbrown

C (m−3) 1 · 1011 1 · 1011
tfinal ( s) 10000 10000

|V | 220 220

u 1 1

of computational particles in our simulation, n, may be smaller than N . Let V ′ be
the exact solution to the model. Then V ′ will match the expected outcome of Binned
SSA for n = N . Denote the error of the simulation by εV . Formally,

V ′ = V (0, N,∞),(A.7)

εV =
||V (τ, n, u)− V ′||2

||V ′||2 .(A.8)

The error εV can be broken into three terms,

εV ≤ ||V (τ, n, u)− V (τ, n,∞)||2
||V ′||2︸ ︷︷ ︸

εu

+
||V (τ, n,∞)− V (τ,N,∞)||2

||V ′||2︸ ︷︷ ︸
εn

+
||V (τ,N,∞)− V (0, N,∞)||2

||V ′||2︸ ︷︷ ︸
ετ

,

where εu is the error incurred due to the stochastic nature of the simulation (which
depends on u, the number of times the simulation is repeated), εn is the modeling error
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due to using fewer particles than would be present in a physically realistic system,
and ετ is the discretization error due to the choice of time-step size τ .

In general, the true solution V ′ is not known exactly. Unless otherwise specified,
the solution vector V ′ will be approximated by V (0, N, u), where u is taken sufficiently
large that the plotted values of εV are accurate.

Additional relevant information on two of the test problems is given below.
• Test Problem 1: There is one histogram bucket for each positive multiple of
1 · 10−18m3. This test problem has a known analytical solution [1], which is
used to compute error.
• Test Problem 3: This problem uses a bimodal distribution,

F (v) =
1

2
G(−40.82, 6.908; v) + 1

2
G(−61.55, 0.9671; v).

Particles from the first mode are made of species 1, and particles from the
second mode are made of species 2. Once coagulations begin, particles may
consist of multiple species. The value of a histogram bucket in V is the mass
of species 2 in that bucket divided by n.

To test the algorithms computationally, SSA, Binned SSA, and Binned Tau-
Leaping were implemented in C++, and tests were run on a standard serial desktop
computer. The computation time needed to run a given simulation is denoted by
tcomp. In the plots throughout this paper, error bars correspond to 95% confidence
intervals based on Student’s t-test. If horizontal or vertical error bars are absent from
a plot, that means they are negligible.
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