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Abstract

In this study, we present a polynomial level-set method for attractor estimation. This method uses the

sub-level representation of sets. The problem of flowing these sets under the advection map of a dynamic

system is converted to a semi-definite program, which is used to compute the coefficients of the

polynomials. The required storage space for describing the result is much less than the mesh-based

methods. The characteristics of attractors are used in the algorithm formulations so that the associated

numerical error can be reduced. We further address the related problems of constraining the degree of the

polynomials. Various numerical examples are used to show the effectiveness of the advection approach.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The introduction of Lyapunov theory brings the attentions of analyzing invariant sets in
control field. In Lyapunov theory, the stability of a system can be justified by testing whether a
form of energy of a system is positively invariant. Level surfaces of such form of energy are the
boundaries of positively invariant sets. Applications of set invariance have been proposed in
many fields such as stability analysis [1–4], controller synthesis [5], robustness analysis [6],
disturbance rejection [7], and performance analysis [8].

One example of positively invariant sets of a dynamic system is the attractor. An attractor is
the smallest positively invariant set of a dynamic system. Any initial system state starting in the
2.00 & 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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domain-of-attraction (DoA) of an attractor will eventually move inside the attractor.
Therefore, attractors could be used as verification tools to determine system stability.
Other than stability verification, the attractor of a chaotic system has also been used for
designing secure, private multiuser digital communications systems. For example, Rohde
et al. [9] proposed an algorithm based on Poincare’s recurrence theorem for chaotic signal
detection and estimation using sampled signal within the attractor of the underlying
chaotic system. To obtain accurate detection result, a clear knowledge of the attractor is
required so that the sampled signal patterns are valid and useful. Similar to the DoA of
nonlinear systems, the attractor may be a complicated shape or even a set with non-integer
dimension [10,11]. Using the invariant nature of attractors, estimation of an attractor can
be carried out by flowing an initial set forward in time and observing how this initial set
evolves. The mesh-based methods have been successfully applied to problems about
estimating the (un)stable manifold of a point x0 [11,12]. Although there are many different
methods of computing the unstable manifold being proposed in this field, the basic idea
remains the same; that is, to grow the (un)stable manifold from a local neighborhood
around x0. These methods differ in how they ensure a good mesh representation being
computed during the process. Some methods are based on growing a geodesic circle
around x0 [13,14]. Guckenheimer and Holmes [13] grew the geodesic circles by modifying
the vector fields. Krauskopf and Osinga [15], on the other hand, used the hyperplane
techniques. Johnson et al. [16] used time parameterization based on trajectory arc length.
A new geodesic circle was generated by interpolating the points evolving from the previous
circle. However, it was hard to control the quality of the interpolation. The method used
by Dellnitz and Junge [11] computes the outer approximation of the manifold by boxes.
A sub-division algorithm was then applied to refine the mesh. All these mesh-based
methods need fine mesh grids to obtain the result with acceptable resolution and the
required storage space grows exponentially with the dimension of the manifold.
In this paper, we present an advection algorithm for the estimation of the attractor. Our

approach presented in this paper uses 0-sub-level set of polynomials to represent a set of system
states, and employs semi-definite programming (SDP) to perform the computation of advecting
sets. The algorithm is iterative and proceeds by advecting the sub-level set of the polynomial
under the flow map of polynomial systems. Unlike the mesh-based algorithms, the advection
algorithm only needs to store the coefficients of the polynomials, which requires much smaller
storage space than mesh-based methods. Using semi-algebraic representations also make it easy
to be applied on-line to verify whether a point is in the attractor. Several numerical examples
computed using the SOSCODE [17] toolbox for MATLAB are presented in this study.
The structure of this paper is as follows. In Section 2, we present the notations used in

this study and provide a brief introduction to the sum-of-squares (SOS) techniques.
Section 3 discusses the algorithm for attractor estimation as well as the related theoretical
analysis. The discussion of the required computation time can be found in Section 4.
Lastly, we conclude the paper in Section 5.

2. Sum-of-squares techniques for set advection

We used R½x� to represent the ring of polynomials in x with real coefficients. A poly-
nomial f 2 R½x� is called positive semi-definite (PSD) if f ðxÞZ0, for all x 2 Rn. A polynomial f

is SOS if there exist polynomials g1, . . . ,gs 2 R½x� such that f ¼ g2
1 þ g2

2 þ � � � þ g2
s . Clearly, if

f is SOS, then f is PSD. It is also well-known that the converse is not true. We used S to denote
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the set of all SOS polynomials in R½x�. Also, we employed Rd ½x� to denote the set of degree d

polynomials in x with real coefficients and used Sd to denote the set of all SOS polynomials
in Rd ½x�.

Suppose g : Rn-R is C1. Let us define the 0-sub-level-set of g to as CðgÞ � Rn given by
CðgÞ ¼ fx 2 Rn j gðxÞr0g. Further, let us define the variety of g by VðgÞ � Rn given by
VðgÞ ¼ fx 2 RnjgðxÞ ¼ 0g. The boundary of CðgÞ is denoted by @CðgÞ. Then, we have VðgÞ*
@CðgÞ, and both VðgÞ and CðgÞ are closed when g is a continuous function. We will use Rþ to
represent the set of positive real numbers.

The following lemma is an important tool for formulating the proposed algorithm and is
a special case of Putinar’s Theorem [18].

Lemma 1. Given p, q 2 R½x�, suppose there exist s0,s1 2 S such that

s0�s1qþ p¼ 0 for all x 2 Rn: ð1Þ

Then CðqÞ � CðpÞ. Further, given q and the degree bound of p, s0, and s1, the set of coefficients

of p, s0, and s1 satisfying (1) is the feasible set of a semi-definite program.

Proof. See, for example, [19] or [20]. &

The representation shown in Lemma 1 is one of the simplest cases of Schmüdgen’s

Theorem [21], which states that if p 2 R½x� is strictly positive inside a compact semi-algebraic
set, S, generated by p1, . . . ,pm as S¼ fx 2 Rn j piZ0, i¼ 1,2, . . . ,mg, then

p¼ Svpv1
1 . . . p

vm
m sv,

where v¼ ðv1, . . . ,vmÞ 2 f0,1g
m and sv 2 S. Putinar [18] later showed that under some addi-

tional constraints on pi, p has a simpler representation as

p¼ s0 þ s1p1 þ � � � þ smpm:

The gap between Schmüdgen and Putinar’s representation was later investigated by Jacobi and
Prestel [22]. In the simple case shown in Lemma 1, if CðqÞ � CðpÞ and CðqÞ is compact, the repre-
sentation of p by Eq. (1) is always possible

The following result is similar. Given q 2 R½x�, if there exists s0, s1 2 S, and E 2 Rþ, such that

s0 þ s1q�pþ E¼ 0,

then CðpÞ � CðqÞ.
Note that usually we know q and want to find p such that CðpÞ and CðqÞ approximately

represent the same set with some other constraints on p, such as pre-defined degree or passing
through some pre-specified points. We have used the above-mentioned relationships to construct
such constraints. This technique is frequently used in the proposed level-set algorithm.

2.1. Sum-of-squares polynomials as semi-definite programming problems

One of the benefits of the SOS techniques is that it can be formulated as an SDP
problem. The following is a standard form of an SDP problem.

min trace CX

s:t: trace AiX ¼ bi for i¼ 1, . . . ,m

Xk0,

where X 2 Rn�n is symmetric. By Xk0, we mean that zTXz is PSD for all z 2 Rn.
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Instead of giving the details of the SOS techniques, we use the following example on how
an SOS problem can be casted as an SDP problem.

Example 1. Suppose we would like to find a polynomial f 2 R½x� such that Cðf Þ ¼
fx 2 R j xþ 1Z0, x�1r0g. Let f ¼ f0 þ f1xþ f2x2, s5, s6, s7 2 R and

s1 ¼ zT Oz, s2 ¼ zT Pz

s3 ¼ zT Qz, s4 ¼ zT Rz,

where z¼ ½x 1�T and O, P, Q, R 2 R2�2. It should be noted that if O, P, Q, Rk0, we can
decompose s1, s2, s3, s4 as SOS polynomials [23].
By examining the relationships between f and xþ 1, and f and x�1, we would like f40

if either xþ 1o0 or x�140 and fo0 when xþ 140 and x�1o0. Using Lemma 1, we
have

s5�s1ðx�1Þ þ s2ðxþ 1Þ þ f ¼ 0

s3 þ s6ðx�1Þ�f ¼ 0

s4�s7ðxþ 1Þ�f ¼ 0:

By comparing the coefficients, we have the following feasibility problem; we need to solve
for O, P, Q, Rk0, s5, s6, s7Z0 such that

f0 þ s5 þ o22 þ p22 ¼ 0 f1�o22 þ o12 þ o21 þ p22 þ p12 þ p21 ¼ 0

f2�o12�o21 þ o11 þ p12 þ p21 þ p11 ¼ 0 p11�o11 ¼ 0

q22�s6�f0 ¼ 0 q12 þ q21 þ s6�f1 ¼ 0

q11�f2 ¼ 0 r22�s7�f0 ¼ 0

r12 þ r21�s7 ¼ 0 r11�f2 ¼ 0,

where we use the lower case letters with subscripts to denote the elements of the matrices.
We get the following solution:

f ¼ x2�1 s1 ¼
1
2

x2 þ xþ 1
2

s2 ¼
1
2

x2�xþ 1
2

s3 ¼ x2�2xþ 1

s4 ¼ x2 þ 2xþ 1 s5 ¼ 0

s6 ¼ 2 s7 ¼ 2,

and Cðf Þ ¼ fx 2 R j xþ 1Z0, x�1r0g, as expected. This example shows how we use SOS
techniques to find the intersection of several semi-algebraic sets. This technique is also one
of the crucial concepts of the proposed algorithm.
2.2. Set advection

Consider the following autonomous system:

_xðtÞ ¼ f ðxÞ, ð2Þ

where f : Rn-Rn is locally Lipschitz. The basic local existence and uniqueness theorem
[24] states that given an open subset U 2 Rn, there exists c 2 Rþ such that the autonomous
system (2) has a unique solution for any z 2 U in the compact time interval ½�c,c�.
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We define the flow map ftðzÞ : R
n � R-Rn to be the local unique solution of

@ftðzÞ

@t
¼ f ðftðzÞÞ

f0ðzÞ ¼ z

8<
: for t 2 ½�c,c�, c 2 Rþ, z 2 Rn:

For any t 2 R such that ftðzÞ exists, the map ft : R
n-Rn is continuous, invertible and has

a continuous inverse; that is, it is a topological homeomorphism on Rn [25].
Given t 2 R, we define the time t advection operator At : CðRn,RÞ-CðRn,RÞ by

q¼Atp if qðxÞ ¼ pðf�tðxÞÞ for all x 2 Rn,

where CðX ,Y Þ is the set of functions mapping from X to Y. The map At is also called the
Liouville operator associated with f; a very important property is that it is linear. Fig. 1 shows
the concept of the advection operator. We relate the advection operator to the advection of
sets in the following remark:

Remark 2. Consider that g1, and g2 are functions mapping Rn to R. If g2 ¼Atg1, then
Cðg2Þ ¼ ftðCðg1ÞÞ.

2.3. Time-stepping

To carry out advection, we must use an approximation to the flow map fh with time step h.
Many such approximations are possible, and are provided by the theory of numerical
integration. Here, we present two simple approximations. The first-order Taylor approxima-
tion to q¼Ahp is the map Bh : CðRn,RÞ-CðRn,RÞ given by

q¼ Bhp if qðxÞ ¼ pðxÞ�hDpðxÞf ðxÞ,

where the derivative Dp(x) is a linear map DpðxÞ : Rn-Rn at each point x. An alternative
approximation is Ch, given by

q¼Chp if qðxÞ ¼ pðx�hf ðxÞÞ:
−2
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Fig. 1. The advection operator At.
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Both these approximations have the following properties: They are both linear maps, and if p

and f are polynomials, then so is q. In this study, we have concentrated on Bh, because
typically, Bhp is a polynomial whose degree is less than that of Chp.
Based on the required accuracy of the advection, we could also choose to use higher order

Taylor approximation. However, depending on the system dynamics, this usually will lead to
the requirement of using higher degree polynomials in the SOS constraints. The relationship
between the accuracy and the degree of polynomials will be further investigated in future work.

2.4. The truncation error

Here, we have examined the bound of the truncation error. Only the truncation error
for the first-order Taylor approximation is presented. The bound for higher order Taylor
approximation can be easily derived using similar methods.

Proposition 3. Consider a polynomial p 2 R½x�. Suppose h 2 Rþ and M � Rn is a compact set

such that the underlying analytic autonomous system _x ¼ f ðxÞ with flow map, ftðxÞ, has unique

solutions defined for any initial condition in M and t 2 ½0,h�. Then, there exists K,E 2 Rþ such that

JBhp�AhpJrE¼K
h2

2
for all x 2M :

That is, the error is proportional to the square of the step size.

Proof. Using the Lie-derivative and Taylor’s Theorem, for any point x 2M, there exists a
point y¼ ftðxÞ where t 2 ½0,h� such that

AhpðxÞ ¼ pðxÞ�hDpðxÞf ðxÞ þ L2
f pðyÞ

h2

2
¼ BhpðxÞ þ L2

f pðyÞ
h2

2
,

where L2
f p is the second-order Lie-derivative of p. Let M be a bigger compact set such that

M*M and ftðxÞ 2M , for all x 2M,t 2 ½0,h�. Let us now select a point z 2M and let
r¼ supx,y2M Jx�yJ. As the system is analytic, there exists a Lipschitz constant N for L2

f p in
M . Then, we have

JL2
f pðyÞJ

h2

2
¼ JL2

f pðyÞ�L2
f pðzÞ þ L2

f pðzÞJ
h2

2
rNr

h2

2
þ JL2

f pðzÞJ
h2

2
:

Hence, we have the result with E¼ ðNrþ JL2
f pðzÞJÞh2=2. &

There are several ways to deal with the truncation error. For example, the upper bound
of JL2

f pðxÞJ for all x 2M can be directly estimated by solving an optimization problem.
This allows us to monitor the growth of the truncation error.
Without further constraints, the truncation error may generate Cðpkþ1Þ with disconnected

sub-level sets outside M. We have used various constraints to deal with this problem.

3. Estimation of the attractors

3.1. Attracting sets

The following provides the definition of the attractor. Similar definitions can be found in
[26,24].
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Definition 4 (Attracting Set). Consider that f is analytic with flow map, f. A closed
invariant set A � Rn is called an attracting set under the flow map, f, if there exist some
neighborhood U of A in which ftðxÞ is defined for all t40 and x 2 U such that
�
 ftU � U for all tZ0,T

�
 t40ftU ¼A.
Definition 5 (Attractor). The attractor of f is the indecomposable attracting set of f.
Moreover, the minimal attractor, A, is the attractor for which no proper subset of A is an
attractor.

For each attractor, its DoA is given by[
tr0

ftU ,

for any open set U such that ftðxÞ 2 A for t-1 for all x 2 U . For each attractor in a
system, there exists an associated DoA. If the DoA for a given attractor is the entire Rn,
then the attractor is called the global attractor. Depending on the characteristics of a
system, the attractor could be points, curves, or complicated sets. For a globally stable
system, the equilibrium point is the minimal attractor and Rn is the associated DoA.

The polynomial level-set method has been successfully applied to the estimation of DoA
[1]. In the estimation of DoA, we advect an positively invariant set backward in time with
the help of star-shaped constraints to avoid the problems caused by truncation errors.
For estimating the attractor, some modification to the polynomial level-set method are
required, since the star-shaped constraint may be too restrictive. For the case where the
DoA is a subset of Rn, the level-set method can also be applied if we choose the initial set
properly. For simplicity, we will consider the global attractor in this paper. Also, we will
only discuss the case where the attractor is bounded.

The proposed algorithm is based on the convergence property given in the following.

Lemma 6. Consider that f is analytic and S1 is a connected closed positively invariant set. Let

h 2 Rþ and define the forwards advection ofS1 to be S2, given by

S2 ¼fhðS1Þ:

Then S1*S2, and S2 is also connected, closed and positively invariant. Further, @S2 ¼ fhð@S1Þ.

Proof. Firstly, we will show S2 � S1. Since S1 is positively invariant, we have

S2 ¼fhðS1Þ � S1,

as desired. To show positive invariance of S2, notice that for any tZ0

f�hðftðS2ÞÞ ¼ftðf�hðS2ÞÞ ¼ ftðS1Þ � S1,

since S1 is positively invariant. Taking fh of both sides, we have ftðS2Þ � S2 as desired.
Finally, connectedness, closedness and preservation of the boundary follow because fh

is a topological homeomorphism on Rn. &

Theorem 7. Consider that f is analytic and A is a bounded minimal attractor. Also, consider

that S0*A is connected closed positively invariant and S0 contains only one minimal

attractor, A, and is contained in the DoA of A. Furthermore, suppose ftðxÞ is defined for all
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t40 and x 2 S0. If the sequence S0, S1, S2, . . . is generated such that

Siþ1 ¼ fhSi for i¼ 0,1,2, . . . ,

for some h 2 Rþ, then the sequence converges to A.

Proof. From Lemma 6, we have

S0*S1*S2* � � � :

By Definition 5, every point in the DoA eventually moves inside an arbitrary E-neighborhood
of A. Since S0 is located inside the DoA of A, from Lemma 6, the boundary points of Si will
move inside an arbitrary E-neighborhood of A for i sufficiently large. Therefore, the sequence
S1, S2, S3, . . . converges to the minimal attractor A. &

In our previous work [1], we used the star-shaped constraints to reduce the problem
generated from the truncation error. In the case of estimating the attractor, star-shaped
constraints may be restrictive because the shape of an attractor is usually not a star-shaped
set. Therefore, we should drop the star-shaped constraints for the algorithm. The main
purpose of the star-shaped constraint is to ensure that the truncation error does not
generate disconnected sub-level-sets. In the case of attractor estimation, similar property
can be enforced by using Siþ1DSi. We have the following forward advection algorithm.
3.2. Forward advection algorithm without star-shaped constraint

Given a polynomial gi�1 such that A � Cðgi�1Þ, and Cðgi�1Þ is connected, closed and
positively invariant, we computed a polynomial gi such that CðA�hgiÞ is approximately
Cðgi�1Þ as follows.
g 2 A, a40, and positive integers d, ~d are picked. Then, using SDP, the following

feasibility problem for gi 2 Rd ½x�, s1, . . . ,s6 2 S ~d is solved:

giðgÞ ¼�1

s1�s2gi�1 þ B�hgi ¼ 0

s3 þ s4gi�1�B�ðh�aÞgi ¼ 0

s5 þ s6gi�1�gi ¼ 0: ð3Þ

Here, an important parameter a is introduced. The above-mentioned algorithm finds a
degree d polynomial gi such that f�hCðgiÞ*Cðgi�1Þ, and f�h�aCðgiÞ � Cðgi�1Þ. Hence the
parameter a may be considered as a tolerance that allows for the constraint that gi is required to
have degree d or less. The second and the third constraints are these approximation constrains
for gi. The fourth constraint ensures that CðgiÞDCðgi�1Þ.
To guarantee that CðgiÞ contains the attractor, we use the following relationships.

Consider that the truncation error is e. We can obtain e as the estimated upper bound of jej
around Cðgi�1Þ using SDP and Proposition 3. We have

CðA�hðgi�eÞÞ ¼ CðB�hgi þ e�eÞ+CðB�hgiÞ+Cðgi�1Þ+A:

Hence, fhCðA�hðgi�eÞÞ ¼ Cðgi�eÞ+fhCðgi�1Þ+A. By subtracting gi with e, the generated
semi-algebraic set is guaranteed to contain the attractor.
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3.3. Finding the initial semi-algebraic set

Before applying the proposed method, we need to start the algorithm with a positively
invariant set. This can be done by searching for a feasible Lyapunov function in Rn

\A. Let
p 2 R½x� be chosen such that A � CðpÞ. Then, the following convex feasibility problem is
solved.

Find V 2 R½x� and s0, s1 2 S such that

DV ðxÞx40 for all xa0

V ðxÞ40 for all xa0

V ð0Þ ¼ 0

DV ðxÞf ðxÞ þ s0 þ s1p¼ 0 for all xa0:

Then, the smallest g sub-level set of V that contains CðpÞ gives us the smallest initial estimation
of the attractor. It should be noted that this method uses the star-shaped constraint, which is
the first constraint. Therefore, to apply the above method, we need first make some coordinate
transformation to place the origin inside the initial attracting set.

3.4. Stopping condition

By using the proposed level-set method, one can successfully propagate the system states
forward in time. However, a stopping criterion is still needed to terminate the iterations.
To detect the convergence of the advected sets, the closeness of two semi-algebraic sets is
analyzed. The following shows that the closeness of two semi-algebraic sets can be estimated
by using scaled sets.

Proposition 8. Given g 2 R½x�, solve s0 2 S,ho 2 R½x�,b 2 Rþ of the following optimization

problem.

max b

s:t: JDgkJ
2
�b2 ¼ s0 þ h0gk:

Then JDgkJZb for all x 2 Vgk.

Proof. Given any x0 2 VðgkÞ, the right-hand side of the constraint is PSD. Therefore,
JDgkJZb. &

Remark 9. Suppose Cðg1Þ*Cðg2Þ and q 2 R½x� is constructed such that CðqÞ � Cðg1Þ and the
normal distance between the boundaries of Cðg1Þ and CðqÞ is less than E. Then, if CðqÞ �
Cðg2Þ � Cðg1Þ, the normal distance between the boundaries of Cðg1Þ and Cðg2Þ is less than E.

To use the result of Remark 9, the user specifies an E and generate the scaled semi-algebraic
set to test whether the result of the next advected set is close enough to stop the iteration.

The scaled version of the Cðg1Þ can be constructed approximately using Proposition 8 in
the following way. Suppose JDgiðxÞJ4b40 for all x 2 VðgiÞ. Let x 2 VðgiÞ; then, the
normal vector of gi at x is

nx ¼
Dgi

JDgiJ
:

For any x 2 VðgiÞ and a small d 2 Rþ, there exists ax40 such that x�axnx 2 Vðgi þ dÞ.
Equivalently, we have giðx�axnxÞ ¼�d. The value of ax is then the normal distance
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between the boundary of CðgiÞ and Cðgi þ dÞ. We can approximate this relationship by first-
order Taylor approximation as

giðxÞ�/DgiðxÞ,axnxS � �d
axJDgiðxÞJ � d

ax �
d

JDgiðxÞJ
:

Now, we would like axrE for all x 2 Vgi. Let d¼ Eb. Then, the normal distance between
Vðgi þ dÞ and VðgiÞ is approximately less than E because

ax �
d

JDgiðxÞJ
¼

Eb
JDgiðxÞJ

rE:

It should be noted that the above-mentioned approximate method fails if the lower bound
of JDgiðxÞJ is zero. In such case, we could expand CðgiÞ by adding a small positive value g
from gi and then apply the above process again.

3.5. Examples of attractor estimation
Example 2. Consider the following dynamical system,

_x ¼ y

_y ¼ x�y�x3:

This system is derived from Duffing’s equation [24] without external forcing. The origin is
an unstable equilibrium point. The actual minimal attractor for the system is the other
two equilibrium points, ð1,0Þ,ð�1,0Þ. Fig. 2 shows the result of this example. The first few
iteration results are shown as thin solid curves. The thick solid curve indicates the result
after 100 iterations. The iteration stops because the decrement rate of the estimated
attractor is too slow. Several system trajectories are also shown as dashed curves.
The solution obtained after 100 iterations is

g¼�641þ 2x�5yþ 49,039y2 þ 115y3 þ 397,279y4 þ 1,022y5 þ 64,226y6

�41,291xy�148xy2�248,650xy3�362xy4�11,562xy5 þ 10,969x2

þ17x2y�102,496x2y2�18x2y3 þ 10,911x2y4 þ 12x3 þ 83,659x3y

þ51x3y2 þ 98,766x3y3�20,780x4 þ 4x4yþ 66,980x4y2�13x5

�40,639x5yþ 10,000x6:

It can be noticed that this system contains two minimal attractors, �1 and 1. In this case, the
level-set method does not give us the minimal attractor since the initial set contains both the
minimal attractors. With a more cleverly chosen initial set, S0, such that S0 is contained inside
one of the minimal attractor’s DoA, the proposed algorithm will give us the estimation of the
attractor instead of giving us the estimation of the collection of the attractors.

Example 3. The Lorenz system [10] is a classical system of a chaotic attractor.

_x ¼ sðy�xÞ

_y ¼ xðr�zÞ�y
_z ¼ xy�bz:



−2 0 2
−4

−3

−2

−1

0

1

2

3

4

x

y

Fig. 2. The result of Example 6.
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s is called the Prandtl number and r is the Rayleigh number. The most interesting case is
probably the combination of ðs,r,bÞ ¼ ð10,8=3,28Þ, where the attractor is butterfly shaped.
The chaotic behavior of the system makes it difficult to obtain a description of the
attractor. In this example, we will try to get an estimation of the butterfly shaped attractor
of the system.

First, a few coordinate changes are made by letting

50x¼ x

50y¼ y

50z¼ ðz�25Þ

so that the attractor is located at the center of the unit box.
After obtaining an invariant set covering the attractor, we start using the forward

advection algorithm to estimate the attractor. We stop the algorithm after 316 iterations
because the decrement rate is less than desired. The rounded solution is as follows:

g¼�6�2xy4zþ 21z�7x5zþ 38z2�4892y2zþ 397y2 þ 4366y4

þ8369y6�970xy�30,911xy3 þ 11,027y2z2�13,481x2zþ xy4

þ16,309xyz�56,320xyz2 þ 32,093xyz3�58,767xy5 þ 608x2

þ77,863x2y2�5x2y3 þ 254,344x2y4 þ 7418y2z3�88,675x3y

þ9x3y2�3x2yz2�x2yz3�680,076x3y3 þ 39,852x4�9x4y

�78,951x2z3 þ 1,009,580x4y2 þ 3x5�77,0871x5yþ 248,581x6

�49,319x2z4�24,907xy3z2�697z3 þ 7464z5 þ 64,744x2z2

�24,900y4zþ 21,137y2z4�2xy2zþ 164,574xy3zþ 6562xyz4

�412,196x2y2zþ 42,644x2y2z2 þ 3x2yzþ 2xy2z2 þ xy2z3
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�256,376x4zþ 245,304x4z2 þ 2x3z3�15x3y2zþ 15x4yz

�213,402x3yz2�2x3zþ 496,094x3yzþ 8x2y3zþ 10,471z6

þ15,529y4z2�255z4 þ x3z2:

The result is then transformed back to the original coordinate, and is plotted in Fig. 3.
The shape of the estimated attractor is shown by thin curves that represent several x�z

cross-sections of the set. The thick solid curves are the system trajectories which are used to
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Fig. 3. Three-dimensional view of the estimation of the Lorenz attractor.
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Fig. 4. The x�y and x�z view of the estimation of the Lorenz attractor.
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show the shape of the attractor. Fig. 4 shows the x�y and x�z plots of the result. The chaotic
behavior of the attractor makes it hard to continue the advection process. However, the
proposed method successfully shows the butterfly shape of the attractor.

The invariant property of the result can be easily verified by evaluating the value of g

along system trajectories. The simulated result is shown in Fig. 5. After the trajectory
enters the attractor, the largest value along the trajectory is �8:2546� 10�6. Therefore, the
estimated attractor is indeed an invariant set. The global lower bound of g is �1:4342�
10�4 which can be easily found by SOS techniques.
4. Computational cost

Computation of the advection algorithm can be divided into two parts. The first part is
to prepare the matrix A and vectors b and C for the SDP solver. The second part is to solve
the SDP using the current available SDP solvers.

There are different strategies to compute the matrices of the equivalent SOS SDP problem.
SOSCODE [17] and SOSTOOLS [23] are two MATLAB toolboxes available for solving SOS
problems. SOSTOOLS relies on the MATLAB symbolic toolbox and has a friendly user
interface which makes it a very good tool for initial testing purposes. SOSTOOLS also hides
most of the inner subroutines from the users and carries out numerous conversion works. This
feature makes the users to have fewer controls on the formulation of the SOS problems.
SOSCODE supplies users with necessary subroutines to compute the required transformation
matrices. However, users need to have a clear knowledge of the details of the preparation
process. The benefits of SOSCODE are that the users have more control of the matrices-
generating process and can apply more sophisticated constraints on the SOS problems. The
advection algorithms are better suited for using SOSCODE.



Table 1

Timing and memory usage of different examples.

Example Dim. of A Size of A (KBytes) T1 (s) T2 (s) No. of Coeff. in g

(2) 529� 10,101 944 1.552 5.2 66

(3) 2908� 91,168 12,050 29.23 150 84
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In the following tables, T1 represents the time used to compute the matrices of the
associated SDP problem and T2 represents the time used to solve the SDP problem using
SeDuMi [27]. The following tables are the timing information generated on a machine with
one 3.4 GHz Pentium 4 CPU and 2 GB memory, running Fedora Core 5.
Table 1 shows some numerical information on the computational costs of the two

examples used in this study. As the dimension and degree of the SOS polynomials increase,
the required time to carry out the advections also increase. It must be noted that the SDP
solver usually does not scale very well as the size of the problem increases. For problems
with high dimensions and degrees, most of the time needed for computation is spent on
solving the SDP. From our experience, increasing the degree of g does not have a great
impact on the computational time. However, increasing the degrees of the SOS polynomials
does have a great impact on the loading of the computation.
One way to speed up the computation speed is to use the full-degree ordering of the

monomials. A degree d full-degree polynomial, y(x), with m variables is the linear combination
of monomials with degrees in each variable not greater than d. That is

y¼
X

aix
di1

1 x
di2

2 . . . xdim
m 0rdijrd:

Then, using lexicographic ordering of the monomials, one could represent the polynomial as a
vector of the coefficients. The position of the coefficients in the vector can be easily calculated
by

i¼
Xm

j ¼ 1

dij d
m�j :

By using the full-degree representation, the transformation matrices exhibit highly structured
features, which let them to be easily constructed without excessive monomial comparisons.
The derivation process is straightforward and interested readers should be able to do it without
problem. Several examples have shown that the code using the full-degree representation runs
more than ten times faster than that using SOSCODE.
On the other hand, using the full-degree representation makes the size of the SDP much

larger. This could greatly slow down the SDP solving process. Therefore, a post processing
is required to remove the extra terms of monomials that have combined degree greater
than d. Fortunately, post processing requires very few computational power. Some speed
comparisons between the SOSCODE and the full degree code for solving Example 3 are
listed in Table 2.
In Table 2, T1 represents the time required for SOSCODE to generate the matrices and Tn

1

represents the time required when using full-degree representation code. After post processing,
the generated SDPs from both the approaches are found to be identical. Therefore, the
amount of time required to solve the SDPs are the same for both the approaches. It can be



Table 2

Speed comparison between SOSCODE and full-degree code.

Deg. of g Deg. of Ref. Dim. of A T1 (s) Tn
1 (s) T2 (s)

6 16 2908� 91,168 29.23 2.75 150

8 18 3991� 166,534 56.93 4.20 374

10 20 5314� 288,875 105.30 5.75 946
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clearly seen in Table 2 that when the problem gets larger, the benefits of using the full-degree
code are more prominent.

The time used for solving the SDP relies on the capability of the SDP solver. SeDuMi
[27] is a fast and reliable solver for small- to medium-sized problems. For large SDP
problems, there are some existing SDP solvers that utilize the power of parallel computing
and show good performance for large-sized problems. Another approach is to take
advantage of the special structure of the generated SDP problem and develop a specialized
solver. This could be a good topic for future research.

From the above-mentioned discussion, it can be concluded that the time required for
carrying out the advection is not fast enough for real-time applications. However, once the
advected set is computed, it can be very easily used to test whether a point is in the attractor.
5. Conclusions

In this study, a level-set algorithm to advect invariant subsets of the state space using
SDP has been presented. The sets have been represented as semi-algebraic sets. The proposed
algorithm generates a polynomial whose 0-sub-level-set approximately represents the advected
set. An algorithm has been proposed for estimating the minimal attractor of a system. This
level-set algorithm not only works for two-dimensional systems, but also works for higher
dimensional systems.

There are several open problems about the level-set method. Although Schmüdgen’s
theorem provides the theoretical support for the existence of solutions, it does not give us
the upper bound of the degree of the polynomials used in such representation. Hence,
when the algorithm fails, it might be due to insufficient degree in the SOS polynomials or
the polynomial used to represent the advected set. Incorrect addition of the degree will lead
to increase in the problem size and one may not be able to yield a feasible solution. A more
careful study regarding the sufficiency of the degree is required in the future work. The
computation process relies on the power of the SDP solver used. The fast growth of the
computation time for an SDP solver when the problem size increases, makes it difficult for
the algorithm to be applied for higher dimensional systems. Thus, determining whether it is
possible to utilize the SOS structure of the algorithm to speed up the solution process
would be a good direction for future research.
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