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ABSTRACT 
 
A new result in optimal control provides a unified 
approach to optimizing the navigation of large vessels as 
they pass through waterways and harbors to and from 
their berthings.  Depending on vessel size and channel 
characteristics, significant time and fuel can be expended 
to safely guide the course and speed along a specified 
path.  Safe paths have historically been developed using 
well-established heuristic relationships involving channel 
depth, obstacle/traffic clearance, traffic volume, water 
current, tides, visibility, and weather.  Typically a large 
vessel is guided through a set of waypoints to arrive at or 

depart from its berthing.  Between waypoints, however, 
some flexibility in the path is permitted.  The objective of 
this study is to utilize this flexibility to optimize the ship 
trajectory between waypoints to minimize time or fuel, in 
the absence of other vessel traffic.  Ship paths are tailored 
to vessel characteristics such as length, draft, and 
displacement.  The multiple-interval generalization of 
Pontryagin's Maximum Principle, established in a pending 
PhD dissertation, is proposed to find the optimal 
trajectory of the vessel.  The generalization addresses the 
total navigation problem, from harbor entrance to 
berthing, and optimizes the path accordingly.  An 
example based on design characteristics of a Panamax 
cargo ship is set up, and solution methods are explored. 
 
INTRODUCTION 
 
Pontryagin’s Maximum Principle was developed in the 
1950’s in response to rapid advances made in missile 
technology.  As the Cold War escalated, it became 
possible to deliver missiles long distances with reasonable 
accuracies.  A theory was needed on how to deliver the 
missiles optimally.  The less time it takes for a missile to 
arrive at its target, the more military value it has; the less 
fuel it expends, the lighter it can be hence increasing 
target range. 
 
Lev Pontryagin (1908-1988) and his assistants solved the 
problem in the 1950’s, providing the theoretical 
framework for this and other similar problems [1].  The 
theory prescribes a well-defined set of differential 
equations and boundary conditions which generally leads 
to a solution that both exists and is unique. 
 
Pontryagin's Maximum Principle is a collection of 
necessary conditions for optimal control that best 
transfers a linear or nonlinear dynamical system from one 
state to another.  The principle accommodates state and 
control constraints.  It is a variational method that 
identifies local extrema, but frequently it finds the global 
extreme.  The principle is closely related to the calculus 
of variations, the method of Lagrange multipliers, and the 
Karush–Kuhn–Tucker conditions.  The main power of the 



principle is that it reduces an infinite-dimensional 
function space problem to one of finite dimensions. 
 
Recently, a new result in the optimal control of nonlinear 
systems was developed by the authors [2].  The new result 
extends Pontryagin’s Maximum Principle to apply to 
multiple intervals.  The generalization also accommodates 
state constraint interdependencies and parametric 
optimization.  From interval to interval, everything about 
the problem can be changed, including the differential 
equations, the state size, the set of admissible controls, the 
performance criterion, and the boundary conditions. 
 
Some portions of the new result appear in previous works, 
such as interior point equality constraints [3].  For the 
most part, however, they have been applied by appeal to 
the intuition, rather than by rigorous proof.  We do not 
dispute their validity and, in fact, our theorem legitimizes 
their use and extends their applicability considerably. 
 
Our new result unifies theory across several fields and has 
diverse applications.  It allows for periodic control as well 
as network optimization, as illustrated in Fig. 1. 
 

 
 

 
 

 
 

Figure 1.  The top subfigure represents single-interval 
control.  State boundary conditions are represented by the 
red dots and differential equations by the blue lines.  The 
new result generalizes this to multiple intervals, pictured 
in the middle subfigure.  The bottom subfigure represents 
a network that can be optimized using the new result. 
 
Applications of the new result include: 
 
 Optimal steering of vehicles through waypoints, 
 Optimal scheduling of an imaging satellite, 
 Optimal grand tour of the solar system using 

planetary gravity assists, 
 Optimal periodic control such as transoceanic flight 

of an albatross or repetitive tasks in automated 
manufacturing, 

 Generalized spline interpolation, 
 Optimal systems of partial differential equations, and 
 Optimal base running for inside the park home run. 
 
In this paper, we apply the new theory to optimally 
control the path of large vessels as they pass waypoints in 
waterways and harbors.  The control is optimal with 

respect to time or energy, or some weighted combination 
thereof determined by the designer.  The equations of 
motion are nonlinear, which the theory accommodates.  
The goal of the paper is to report the new result in the 
context of ship navigation, set up the multipoint boundary 
value problem implied by the new result, and discuss 
possible ways to solve the resulting equations. 
 
PONTRYAGIN’S MAXIMUM PRINCIPLE 
 
Consider the system of differential equations 
 

, 																																					 1  
 
defined on the interval , , where ∶ →  is 
the state and ∶ →  is the control.   is an admissible 
control if it is Lebesgue measurable, bounded on , and 

∈ 	 for all .   is an arbitrary specified subset of 
.  When  is an admissible control and  is a 

sufficiently smooth function of  and , (1) generally has 
a unique solution on interval  for any given initial 
condition. 
 
Solutions  of (1) are deemed feasible if there exists an 
admissible control  that drives the state from some initial 
condition ∈  to some final condition ∈ , 
where  and  are given smooth manifolds in .  A 
manifold is simply a smooth surface in , an example of 
which is the unit sphere in .  A manifold is typically 
defined by a set of  scalar algebraic equations, in which 
case the manifold is said to have dimension .  For 
example, the unit sphere in  is defined by the single 
equation 1, so it is a 2-dimensional 
manifold.  The introduction of  and  allow us to 
accommodate incompletely specified state in a fairly 
general manner.  If the above conditions are satisfied, we 
say that ,  is a feasible pair. 
 
Consider feasible pairs , , when they exist, that 
minimize 
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where  is a sufficiently smooth function of  and .  In 
this case, ,  is said to be an optimal pair.  When an 
optimal pair ,  exists, it attains the global minimum of 

,  over all feasible pairs, but it may not be unique.  
Even if feasible pairs exist, there is no guarantee that any 
are optimal. 
 
The Hamiltonian is defined as the scalar function 
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where  ∶ →  is called the costate.  In this and other 
similar applications, we can set the scalar  1 without 
significant loss of generalization.  Doing so simplifies the 
Hamiltonian to 
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which we use henceforth.  Roughly speaking, the 
Hamiltonian is the infinite-dimensional analogue of 
adjoining a finite dimensional constrained objective 
function with Lagrange multipliers. 
 
Transversality is now defined.  Let  be a manifold in 

.  The tangent plane of a manifold  at a point ∈  
is denoted by .  A vector  ∈  satisfies the 
transversality condition with respect to  at  if  0 
for all ∈ .  The condition is equivalently stated as 
		 .  When manifold  consists of a single point, for 
example, the transversality condition is vacuous.  At the 
other extreme, when , the transversality condition 
requires  0. 
 
A version of the original Pontryagin's Maximum Principle 
useful for our purposes is now stated.  Some of the more 
esoteric technical conditions are omitted for clarity, and 
can be found in [1]. 
 
Theorem 1.  Let ,  be defined on the interval 

,  and suppose  and  are manifolds that 
encode initial and final conditions, respectively.  If ,  
is an optimal pair, then there exists an absolutely 
continuous function  ∶ →  such that 

1. The adjoint equations   hold a.e. on , 

2. The minimum condition 

, , 
∈

, ,   

holds for almost every ∈ , 
3.   satisfies the transversality condition with 

respect to  at  and   satisfies the 
transversality condition with respect to  at , 

4. When the times  and  are free, 
														 , ,  0. 

Furthermore, for any absolutely continuous function  
that satisfies conditions 1 and 2, the time function 

, ,   is constant on . 
 
Application of Theorem 1 reveals that there are 2  first-
order differential equations,  state equations and  
adjoint (or costate) equations.  To solve them, 2  
boundary conditions are needed, no more and no less.  
When the initial and final states are specified, this creates 
the required 2  conditions.  When either or both the 
initial or final state are not fully specified (i.e., some 
states are left free to be optimized), there are less than 2  
state boundary conditions.  The remaining boundary 
conditions “migrate” one-for-one to costate boundary 

conditions through transversality.  The result is a two-
point boundary value problem with the number of first-
order differential equations precisely equal to the number 
of boundary conditions. 
 
As mentioned in the Introduction, the usefulness of 
Pontryagin's Maximum Principle is that it reduces an 
infinite dimensional optimization problem to a finite 
dimensional problem.  For well-posed problems, 
application of these necessary conditions typically 
identifies a single feasible pair ,  which is the only 
possible optimal solution.  Theorem 1 does not guarantee 
that this solution is optimal, but it does guarantee either 
that it is optimal or that no optimal solution exists.  Other 
means, usually knowledge of the application, is then used 
to resolve between the two possibilities. 
 
Two examples demonstrating Pontryagin’s Maximum 
Principle are illustrated in Figs. 2 and 3. 
 
MULTIPLE INTERVAL EXTENSION OF 
PONTRYAGIN’S MAXIMUM PRINCIPLE 
 
In [2], we generalize Pontryagin's Maximum Principle to 
apply to an interval ,  partitioned into a grid of 
knots 	 ⋯ .  The knots can be fixed or 
free.  Denote the closed subintervals of the grid by 

,  for 1,… , .  Constraints, such as 
interior point equality constraints (waypoints), can be 
applied at the knots.  As mentioned in the Introduction, 
system characteristics can also differ from subinterval to 
subinterval.  In this paper, we demonstrate the multipoint 
 

 
Figure 2.  Time optimal control of a double integrator.  
Phase plane shows optimal trajectory, x  is position and 
x  is velocity.  The red dots represent various initial 
conditions.  The optimal control is max until reaching 
switching curve, then it jumps to min driving the state to 
the origin in minimum time.  Pontryagin formalized the 
theory behind bang-bang control, and extended it to many 
other important problems. 
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Figure 3.  Optimal thrust control of spacecraft to reach 
escape velocity.  Constant thrust ion engine powers 
spacecraft to maximize orbital energy after time .  
Related problems that can be solved using Pontryagin’s 
Maximum Principle are minimum time to escape velocity, 
minimum fuel to escape, and minimum constant thrust to 
escape in time . 
 
application without changing system characteristics 
across the subintervals. 
 
Our new result affirms formation of the Hamiltonian of 
Theorem 1 from which both the adjoint equations and 
minimum condition follow.  What is new is how the 
transversality condition is applied.  We now state the 
multiple interval extension of Pontryagin’s Maximum 
Principle in a form useful for the next section. 
 
Theorem 2.  Let ,  be defined on the interval 

,  which is partitioned into a grid of knots 
	 ⋯ .  Also let ,  for 
1,… , .  Suppose  are manifolds into which 

boundary conditions at the knots have been encoded.  If 
,  is an optimal pair, then there exists a function 

 ∶ →  that is absolutely continuous everywhere 
except possibly at the knots such that 

1. The adjoint equations   hold a.e. on , 

2. The minimum condition 

, ,
∈

, ,  

holds for almost every ∈ , 
3. The transversality conditions are satisfied: 

 ,  , ,  , … ,  ,   
is orthogonal to the tangent space of  at the point 

, , , , … , ,  
where 
					 ⋯ , 
and 

4. When all the knots 	  are free,	
						 , ,  0	for	 1, … , . 

Furthermore, for any absolutely continuous (except 
possibly at the knots) function  that satisfies Conditions 

1 and 2, the time function , ,   is constant 
on each . 
 
Application of Theorem 2 reveals 2  first-order 
differential equations (  state equations plus  adjoint 
equations, on each of the  intervals).  To solve them, 
exactly 2  boundary conditions are needed.  When the 
initial and final states are specified on each subinterval , 
this creates the required 2  conditions.  But then 
Theorem 2 offers nothing new, since Theorem 1 can be 
applied  times to obtain the optimal solution. 
 
The power of Theorem 2 arises with incompletely 
specified state constraints, for example when position, but 
not velocity, is specified at the knots.  For incompletely 
specified states, the theorem provides a recipe for 
constructing the 2  boundary conditions.  As before, the 
boundary conditions associated with unspecified states 
“migrate” one-for-one to costate boundary conditions 
through transversality.  For the unspecified states, 
continuity of state must be enforced.  It is noteworthy that 
Theorem 1 accomplishes this simply by “migrating” 
continuity of state to continuity of costate.  Again, 
Theorem 1 prescribes exactly 2  boundary conditions.  
The result is a multipoint boundary value problem with 
the number of first-order differential equations precisely 
equal to the number of boundary conditions. 
 
Figure 4 shows an aircraft pylon race optimized using the 
new result, an example of optimal waypoint steering. 
 

 
Figure 4.  Aircraft races from pylon to pylon to minimize 
time on course.  Aircraft has limited thrust, but can steer 
in any direction.   In this multipoint optimization, there 
are seven waypoints, the pylons, and six subintervals 

6 .  Velocities at all waypoints, including start and 
end, are unspecified. 
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SHIP EQUATIONS OF MOTION 
 
A simplified model of the motion of a ship traveling at 
low speeds is suggested in [4].  This model was 
reformulated into the following 5-state model: 
 
																							 	  
																							  
																							 cos ,  
																							 sin 	 ,  
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The variables and functions are defined in Tables 1 and 2.  
Values associated with a Panamax class ship are given in 
Table 3. 
 
Note that the equations of motion in (4) are nonlinear, 
rendering linear optimization methods inapplicable.  The 
nonlinearities are, however, “smooth” as required for 
applicability of Theorem 2. 
 
A few comments are in order about simplifying 
assumptions made that led to the model given in (4): 
 
 At slow speed, wave action is small.  The model 

thus does not include roll, pitch, heave, or sway. 
 Side slip motion of the ship (relative to the 

water) is zero.  This assumption is equivalent to 
infinite hull resistance in the lateral (athwartship) 
direction.  The ship speed relative to the water, 

, is thus the longitudinal (along ship) 
component of speed relative to the water. 

 Water current ,  is modeled as a function 
of ship position ,  to allow spatially-
varying water current fields such as river and 
tidal flow.  The water current field is not time 
varying. 

 Typical thrusting hull resistance of a large ship is 
exemplified in Fig. 5.  At slow ship speeds in 
harbors and waterways, thrusting hull resistance 
can be approximated by viscous friction 
∆ ∆ |∆ | where ∆  is the 

longitudinal speed relative to the water.  Turning 
hull resistance can similarly be approximated by 
viscous friction ∆ ∆ |∆ | where 
∆ . 

 
It is useful to regard propeller thrust, , and rudder 
torque, , as convenient functions of control variables 
described as follows.  Instead of controlling thrust 
directly, it can be controlled by a desired or commanded 
steady-state velocity: 
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It can be seen from (1) that, in the absence of water 
current, a constant setting of  in (5) eventually results in 

Table 1 
State Variables 

 
State Description 

 Longitudinal ship speed relative to 
the water (kt) 

 Heading rate (deg/h) 
North position (nm) 
East position (nm) 

 Heading (deg) 
 
 

Table 2 
Other Variables and Functions 

 
Symbol Description 
M Mass of ship (kg) 

Moment of inertia of ship about vertical 
Propeller thrust 

 Rudder torque 
Hull resistance function (thrusting) 
Hull resistance function (turning) 

 North water current speed (kt) 
 East water current speed (kt) 
 Longitudinal water current speed (kt) 

cos sin  
 Water current rotation rate (deg/h) 

 

 
 

Table 3 
Panamax Container Ship Characteristics 

 
Characteristic Value/Variable 

Displacement  = 83,000 kg 
Length  = 228 m 
Beam  = 32 m 
Draft  = 12 m 
Moment of inertia 
about vertical 

 = /12 

Max propeller thrust  in N 
Max rudder torque  in Nm 
Linear coefficient of 
viscous friction 

 in N/kt2 

Angular coefficient of 
viscous friction  in Nm/(deg/h)2 

 
 
a ship speed of  (  must be injective as it is here).  This 
way, posted waterway speed limits are imposed by the 
theory simply in requiring | | .  Similarly, rudder 
torque can be controlled by 
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Figure 5.  Total hull resistance (thrusting) as function of 
ship speed.  At slow speeds, it can be modeled as viscous 
friction, proportional to the square of ship speed. 
 
where 1/  is the commanded radius of curvature.  
To better understand this, let  be the radius of curvature 
of a ship turn and 1/ .  At any ship speed, , the turn 
rate satisfies , thus  and  
which leads to (6).  There is a maximum rudder angle (let 

1/ ), so that it is natural to impose this 
limitation as 	| | .  This also nicely fits in with the 
theory. 
 
OPTIMAL CONTROL OF SHIP TRAJECTORY 
 
Theorem 2 is now applied to optimize the trajectory of a 
large ship.  We choose to minimize a weighted 
combination of energy expended and elapsed time 
according to a performance criterion given by 
 

											 7  

 
where  and 		  scale the two controls.  The parameter 

0 weighs the criterion between energy optimal (small 
) and time optimal (large ), and takes on a fixed value 

assigned by the designer. 
 
The admissible control set is characterized by 
 

| | 	and	| | 	.																					 8  
 
For now, we assume no water current (no flow, no 
rotation). 
 
The interval of optimization ,  is divided into time 
knots ⋯  at which waypoint 
constraints are set so that ,  and ,  
for 1,… , .  No constraints are set on , , and  at 
the knots. 

From (3), the Hamiltonian can be worked out to be 
 

  

																								   

																								  cos ,  
 sin ,  														 9  

 
The adjoint equations can be computed analytically from 
the Hamiltonian using Condition 1 of Theorem 2: 
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The minimum condition is then applied from Condition 2 
of Theorem 2, and closed-form expressions for the speed 
and rudder controls can be computed from 
 

argmin
| | 																											 11a  

 
argmin

| | 																												 11b  

 
Note that when solved, these equations express the 
control as a function of the costate, thus eliminating the 
control from the set of differential equations. 
 
Condition 3 of Theorem 2 gives the transversality 
conditions.  With waypoint constraints and transversality, 
there are 2  boundary conditions which we tabulate as 
follows.  The state boundary conditions are 
 
 Waypoint constraints at all knots 2 1 , and 
 Continuity of all states at interior knots 5 1 . 
 
The costate boundary conditions are 
 
 Zero , , and  costates at  and  (6), and 
 Continuity of , , and   costates at interior knots 

3 1 . 
 
This totals 10  boundary conditions which appear to 
balance with that required, since there are 5 states.  
But Condition 4 of Theorem 2 imposes  additional 
boundary conditions: the Hamiltonian is zero at the 
termination of each subinterval. 
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Adding up the boundary conditions, we apparently have 

 too many.  This is explained by the fact that there are  
additional unknowns when the knots are free (

 are the unknowns). 
 
Summarizing the count, we have 10 differential equations 
on  intervals plus  unknown time intervals .  There 
are 11  boundary conditions, exactly as needed, thus we 
have a well-defined multipoint boundary value problem. 
 
CHALLENGE OF NUMERICAL SOLUTION 
 
For an initial value problem, the solution to a differential 
equation can be directly integrated starting at the given 
initial condition.  It is a very different situation for a 
multipoint boundary value problem in that it may not 
have a solution, and if it does, it may not be unique.  
Methods of numerical solution are generally classified as 
direct or indirect [5]. 
 
Direct methods optimize a problem by creating a grid 
upon which the system is discretized, and the resulting 
finite dimensional system is optimized.  Some direct 
methods create adjoint equations internally [6], in analogy 
with optimization by the method of Lagrange multipliers. 
 
Applying Pontryagin’s Maximum Principle to infer an 
optimal solution is an indirect method.  The resulting 
multipoint boundary value problem is then solved for 
using such methods as shooting [7], which tend to be 
numerically unstable, or collocation [8], which generally 
are stable numerically.  Although the continuous nature of 
the differential equations is retained, a computational 
issue with indirect methods is the doubling of the state 
size, when the state equations are adjoined with costate 
equations.  Another issue with indirect methods is that 
they generally require an initial guess that is sufficiently 
close to the optimal solution in order to converge to the 
proper solution. 
 
Our first attempt at solution was to use the indirect 
method of solving the multipoint boundary value problem 
using Matlab function bvp4c [9].  Function bvp4c is a 
fourth-order collocation method and has the capability to 
solve the multipoint problem, but the time knots must be 
fixed.  bvp4c accommodates unknown parameters, 
however, and we were successful in setting up the lengths 
of the time intervals, , as unknown parameters, which 
transforms the free time problem into a fixed time 
problem. 
 
At this stage of research, we are encountering difficulties 
in coming up with the sufficiently close initial guess 
required by bvp4c.  An heuristic guess for the optimal 
state is easy to formulate, but an initial guess for the 
costate is much more difficult to glean.  Generating the 

costate guess by random numbers works in some cases, 
but only when the state size and number of intervals is 
small.  The most difficult part of numerical solution thus 
is coming up with a sufficiently close initial guess of the 
costate. 
 
SUMMARY AND CONCLUSION 
 
A new result that extends Pontryagin’s Maximum 
Principle was introduced and was applied to the 
navigation of large vessels as they pass through 
waterways and harbors to and from their berthings.  The 
theory behind the new result is complete, and will soon be 
published in [2]. 
 
Difficulty was encountered in finding optimal solutions 
by numerical means.  An indirect method was used in 
which the problem is set up as a well-defined multipoint 
boundary value problem.  An initial guess is required by 
the software used, but our ad hoc method of constructing 
an initial guess was not sufficiently close to the optimal 
solution for this application.  We have been successful in 
solving problems with smaller state size, but when the 
state size exceeds 4, solution by this method 
becomes more of a challenge. 
 
Our current research is focused on developing an 
adequate heuristic for optimal costate.  One idea is to 
exploit the cost sensitivity interpretation of the costate, in 
which physical intuition might admit a close enough 
initial condition.  Another is to use a direct method that 
creates the costate, for example as described in [5], and 
use it as the heuristic.  The indirect method would then be 
used to verify the optimal solution. 
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