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Measuring revealed student scheduling preferences using constrained
discrete choice models

Abstract

For constrained student resources with large student populations it is often necessary to
implement some form of reservation or scheduling system. Examples of scheduled-access
resources can include one-on-one tutoring, machine shops or labs, and computer-based testing
facilities. For planning and resource scheduling purposes it is important to be able to forecast
demand, and thus it is important to understand what drives student preferences for particular
scheduling time slots. Measuring these preferences can be challenging, however, for at least the
following three reasons. (1) Revealed preferences (what students actually choose) can differ
significantly from stated preferences (what they say they will want at a future time), requiring the
use of actual scheduling data to infer preferences or utilities. (2) The utility that students derive
from particular choices is multifactorial, so that in a computer-based testing facility, for example,
students may prefer to take their exam mid-afternoon, but they may also prefer to take it as close
to the end of the exam period as possible, and it can be difficult to disentangle these factors. (3)
Capacity constraints will frequently lead to many time slots being fully reserved, making it
unclear which slots were actually preferred.

This paper presents a general framework for measuring revealed student preferences from actual
reservation or scheduling data. This framework is based on the theory of constrained discrete
choice modeling, as used in economics for modeling consumer preferences. A multifactorial
random utility model (RUM) is formulated for student scheduling preferences and the model is
trained on scheduling data using maximum likelihood estimation (MLE) and cross-validated on
multiple rounds of training/test data splits.

Results are presented using scheduling data from a computer-based testing facility with
approximately 50,000 student reservations over three semesters (Spring 2015 to Spring 2016,
inclusive). We show that this measurement methodology can accurately capture student
preferences in real-world scheduling data and can successfully separate out time-in-week
preferences from time-within-exam preferences. Errors are quantified using both log-likelihood
with per-reservation data and root mean square error (RMSE) with data aggregated to the time
slot level. We discuss both estimation and simulation algorithms for constrained discrete choice
models and discuss how Monte Carlo simulation can be used to obtain uncertainty predictions for
predicting expected usage.



1. Introduction

Computer-based assignment systems have been widely adopted in large STEM courses in recent
years3, due to the benefits for both students and instructors, including immediate feedback, online
content integration, as well as reduced grading workloads. The development of computer-based
assignments with automatic grading allows instructors to carry out more frequent testing in their
courses. Educational research indicates that frequent testing leads to better retention than
rehearsal methods like rereading notes or previously solved problems4;5. In addition to the
retention gained, students require repeated practice in order to achieve skill mastery1.

At the University of Illinois at Urbana-Champaign, we have employed these computer-based
assessments for summative assessment by implementing a “Computer Based Testing Facility”
(CBTF) similar to one that was previously proposed8. A CBTF is a proctored computer lab
dedicated to holding the exams and quizzes of various classes. Students are allowed to choose
from a range of possible exam slots (e.g., 1PM – 2PM on Thursday) throughout their exam
period, which typically lasts 3 to 5 days. Exams slots are open for multiple exams, so students
from a range of classes may be taking an exam at the same time in the same room. Exams are
typically one hour in duration, except for a small number of courses that use two hour exams. For
modeling purposes, two-hour exams are treated as two one-hour exams.

Empirically, when choosing exam times our students do not uniformly distribute themselves.
Figure 1 shows that there is significant variation in the number of exams taken on a day compared
to others. Figure 2 shows that there is significant variation in the number of exams taken at a time
during a week; each of the seven saw teeth regions represent a different day of the week, each
with its own unique distribution.
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Figure 1: Reservations by day of the semester.
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Figure 2: Reservations by day/time during
a week.

Given this non-uniformity, it is useful to be able to model the choices students make in selecting
exam slots. Having a model that describes this behavior has, for the past 3 semesters, allowed us
to better schedule exams (i.e., prevent slots from becoming too popular, or have too much
interference from other classes), allowed us to predict the number of proctors needed for slots



ahead of time based on their popularity, and allowed us to reason about the implications of the
opening and closing times of CBTF each day.

In Section 2, this paper presents a model, based on discrete choice theory6. The model allows us
to predict the likelihood that a given student selects each time slot when making an exam
reservation. It does so by estimating the utility associated with each time slot for a given exam.
The two factors used in the model were chosen by studying patterns in the reservation data. First,
students’ preferences vary with the time-and-day-of-week; generally students prefer time slots
later in the day, as seen by the daily ramps in Figure 2. Second, students generally prefer taking
exams on days later in the exam period (day-within-exam-period). By observing past student
reservation choices, we can estimate the utility for an “average student” of different choices in
each of these dimensions. Having computed these utilities, we can predict student behavior in
novel situations through simulation by assigning students to slots in proportion to these observed
utilities, modulo availability.

Beyond describing our discrete choice model, this paper makes three contributions:

• We describe (in Section 3) a fluid limit simulation algorithm that computes predicted exam
slot utilizations from the model and the number of students taking each exam sufficiently
efficiently to be interactive.

• We demonstrate (in Section 4) that a model that uses both time-of-day and
day-within-exam-period components predicts student preferences significantly better than a
uniform distribution or a model that includes only one of the components.

• We demonstrate (in Section 5) through cross validation that the model can effectively
predict data that it hasn’t previously seen.

In Section 6, we show a visualization that is part of our interactive tool for scheduling exams. We
conclude in Section 7 with a discussion of opportunities for future work.

2. Model

Our discrete choice model is based on work presented in a previously-published Work-in-Progress
paper7. We include here a description of the model with small improvements for clarity.

As noted above, the model makes use of two variables: the number of days left in the exam period
and the time and day of the exam slot. The model associates a distinct utility for every exam slot
during the week (i.e., each ¡day, time¿ combination). Independently, the model associates a utility
associated with the (integer) number of days remaining between an exam slot and the end of the
exam period.

These utilities are defined as

Vni =

Nh∑
h=1

βhxih +
Nr∑
r=1

λrwnir, (1)



where Vni represents the utility of decision n for a given exam slot i. βh is the utility of hour h,
and xih is either 0 or 1, depending on if slot i is at hour h. λr is the utility of an exam slot with r
days remaining in the exam period, and wnir is either 0 or 1, depending on if slot i has r
remaining days for decision n. This definition is done as a summation such that the generation of
all of V can be done at once, using x and w to “filter out” the correct utilities for each element.

While it is likely that each student values the time slots differently, the model attempts to estimate
the utility of time slots as perceived by the “average” student. By computing these average
utilities from the whole student population, we can simulate the behavior of the whole population
by probabilistically assigning students to exam slots in proportion to these utilities. Specifically,
during simulation, these utilities are used to pick an exam slot from a list of available slots. As
slots fill up, they are no longer available for additional reservations. As such, the model is a
discrete choice model with capacity constraints2.

The probability that decision n chooses slot i is then

pni =
anie

Vni∑Ni

j=1 anje
Vnj

, (2)

where Ni is the number of slots and ani is 1 if slot i is available when student n is making their
reservation.

2.1. Computing Utilities

Given a data set of student reservations, the utilities β and λ can be computed by finding their
values that maximize the likelihood of producing that data set.

The log-likelihood, L, of producing a given assignment of student reservations given a set of
utilities is

L =
Nn∑
n=1

Ni∑
i=1

yni log pni, (3)

where yni is 0 or 1, depending on if slot i was chosen in decision n in the data set. In our case,
this was done with numpy’s BFGS optimizer, where the argument being optimized was an array
containing both β and λ.∗

Figures 3 and 4 show representative utilities for days remaining in exam period (λ) and by day
and time of week (β), respectively.

∗The variables actually optimized in our implementation force one value in both β and λ to be zero. This is valid
since we can define a “zero” value in each, and the relative utility of each possibility is preserved. This also reduces
the number of variables being optimized by two, which helps decrease the runtime at least a little.
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Figure 3: Utilities by days remaining in an
exam period.
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Figure 4: Utilities by day and time in a week.

3. Fluid-Limit Simulation

The primary application of the model is to predict utilization of a set of exam slots for a given set
of exams. Exam slots are specified by their date and time and their capacity; one exam slot is
allocated for each distinct hour that the CBTF will be open during the semester.

Exams are specified by: (1) which day of the semester the exam period starts, (2) the number of
days in the exam period, (3) the number of students who need to take it, and (4) the length of the
exam in slots†.

Because multiple exams are scheduled in the CBTF in parallel, we find it useful to additionally
define the concept of a group. A group is a set of students that are all taking a specific exam (e.g.,
“Course 3 Exam 5”). Each group has a given size (as specified by the exam) and a set of utilities
associated with each exam slot (as per the average student assumption in Section 2), which we
write as Vgi, the utility of the group g picking slot i. We also define group feasibilities fgi, which
is 1 if group g can take an exam in slot i, or 0 if it cannot.

The group feasibilities are generated with the previously described exam specifications.
Additionally, we define capacity fractions C, which outline the capacity of the CBTF for each slot
(e.g., 48 students from 10AM to 10PM, except on weekends where the CBTF is closed after 6PM,
and over breaks when no exams should be scheduled).

Given our assumption that students select exam slots probabilistically and uniformly based on the
model’s utilities, we can efficiently perform the simulation by treating the groups of students as a
continuous fluid rather than discrete individuals. This approach “pours” a group of students into
exam slots in proportion to the probabilities that students in that group would choose those exam
slots.

Specifically, our fluid limit algorithm (Algorithm 1) computes an aggregate rate that each exam

†We currently support 1 hour and 2 hour exams during the semester. For the purpose of the model, we treat N
students taking a 2-hour exam as 2N students taking a 1-hour exam. Given that 2-hour exams are a minority of our
exams, we haven’t found this to significantly affect the predictive power of the model.



slot fills based on the contributions from each group, assuming that each group fills slots at a rate
proportional to the size of the group. With these aggregate rates, we can compute which slot fills
to capacity first and at what percentage of the student reservations that occurs. At that point, the
aggregate rates can be re-computed with the updated slot availability and the process can be
repeated until all of the reservations have been made.

This algorithm can be extended to emit exact counts for each slot.

Algorithm 1 Expected-value “fluid limit” simulation algorithm
1: Input parameters: group feasibilities f , group fractions H , group utilities V , and capacity

fractions C
2: p̃gi ← 0 for all g = 1, . . . , Ng and i = 1, . . . , Ni

3: agi ← fgi for all g = 1, . . . , Ng and i = 1, . . . , Ni

4: Si ← Ci for all i = 1, . . . , Ni

5: t← 0
6: repeat

7: pgi ←
agie

Vgi∑Ni

j=1 agje
Vgj

for all g = 1, . . . , Ng and i = 1, . . . , Ni

8: Di ←
∑Ng

g=1Hgpgi for all i = 1, . . . , Ni

9: ∆ti ←

{
Si/Di if Di > 0

2 otherwise

}
for all i = 1, . . . , Ni

10: j ← argmin
i∈{1,...,Ni}

∆ti

11: ∆t← ∆tj
12: if t+ ∆t > 1 then
13: ∆t = 1− t
14: t← 1
15: else
16: t← t+ ∆t
17: agj ← 0 for all g = 1, . . . , Ng

18: end if
19: p̃gi ← p̃gi + ∆t pgi for all g = 1, . . . , Ng and i = 1, . . . , Ni

20: Si ← Si −∆tDi for all i = 1, . . . , Ni

21: until t = 1
22: Output group choice fractions p̃

The algorithm is fast enough for interactive use. Simulations for a whole semester involving tens
of thousands of reservations can be completed in about a second on a commodity laptop. ‡

‡While simulating a semester takes about a second, computing the utilities for the simulator as described in Sec-
tion 2.1 takes about 20 minutes on the same machine. Thankfully, this only needs to be done once to allow the
simulator to work.



4. Model Accuracy

We first validate that our model performs better than a uniform distribution over the slots (i.e., by
simply making all slots equally as likely to be chosen) and that the two variable model
(time-and-day-of-week and day-within-exam-period) performs better than models with only one
of those parameters.

4.1. Experimental Method

For this test, we used data from Fall 2015, with various “odd” exams removed (like one-off or
makeup exams). The data contains all of the reservation data for that semester, including which
exam was taken (the “group”), which exam slots were available when the decision was made, and
which of those slots were actually chosen.§ For cases where students change their reservations,
we considered only their final reservation.

Four models were considered: the two-component model (the “full model”) that is the focus of
this paper, a model that only considered time-and-day-of-week, a model that only considered
day-within-exam-period, and a uniform model. For each of the one-component models, the model
was trained using only that component and simulated using zeroes for the other component. The
uniform model was implemented by setting all of the utilities to the same value.

We simulated all of the models using the fluid-limit algorithm and compared the results against
the true reservation data from Fall 2015.

4.2. Results

Table 1 shows the errors per slot in terms of the number of reservations compared to the actual
reservations seen, while Table 2 shows the error per day. Results are presented as
root-mean-square-error (RMSE), mean-average-error (MAE), and median-average-error (Median
AE).

Given true data x and predicted data x̂, we define RMSE, MAE, and Median AE as

RMSE(x, x̂) =

√∑n
i=1(x̂i − xi)2

n
(4)

MAE(x, x̂) =
1

n

n∑
i=1

|x̂i − xi| (5)

Median AE(x, x̂) = median|x̂− x|. (6)

§Some filtering needs to be done if a proctor forces a student into a slot that wouldn’t normally be available, which
can occur if a student misses an exam and takes an empty seat at another time. Not doing so means that the model
encounters a decision for which there is no available exam slot, which then brings (rightfully) the likelihood of that
condition to zero.



Table 1: Errors per slot.
Uniform distribution Days Remaining Only Hour Only Full Model

RMSE 9.567 8.748 7.075 5.300
MAE 6.526 5.564 4.575 3.237

Median AE 4.304 2.981 2.647 1.658

Table 2: Errors per day.
Uniform distribution Days Remaining Only Hour Only Full Model

RMSE 61.58 50.56 52.54 31.76
MAE 39.54 34.44 35.78 17.79

Median AE 22.38 26.22 27.40 5.81

By these errors, the proposed two-component model (the “full model”) produces the least error
out of those tested. The uniform distribution performs the worst, with the proposed
two-component model’s individual factors performing somewhere in the middle.¶

Figure 5 shows a visual comparison of the four outputs for each exam slot in the week, summed
over all weeks in the semester. The uniform model is very even per day, but varies by day because
some days (e.g., Thursdays) had more exams that could be taken that day. The
day-within-exam-period-only model is similarly very even during each day, but more accurately
predicts each day’s load. The time-and-day-of-week-only model shows more accurately shows the
trends within each day, but doesn’t correctly allocate load by day. For example, too much load is
allocated to Thursday causing it to run at full capacity starting earlier in the afternoon. The
proposed two-component model (the “model predicted” panel) combines the two to get
something even closer to the true data.

¶As a side observation: time-and-day-of-week seems to better predict the errors per slot overall, while the day-
within-exam-period seems to better predict the number of students taking an exam in a given day.
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Figure 5: A visualization of the four models tested in Section 4, with the true reservations.

5. Cross validation

In the previous section, we demonstrated that the two-component model provides significant
accuracy improvements over alternative simpler models. That experiment was performed using
the same semester’s data for both the training and test set due to methodological challenges (e.g.,
every semester our CBTF has been open slightly different hours in the week). One should always
be suspect of using the training set as the test set, as there is the potential for over-fitting the
training set, especially as model complexity is increased.



5.1. Experimental Method

While it may seem straight-forward to split a semester’s data into a separate train and test inputs
(e.g., using the first half of the semester as the train input and the second half of the semester as
the test input), the continuous overlapping of exam periods means that some exams would span
the test/train boundary, causing the two data sets to not be independent.

As a result, we chose to use a cross-validation strategy where we randomly assign 70% of the
student reservations to the train set and the remaining 30% to the test set. When we pre-process
the data before training, we compute the exam slots that are available at the time the reservation
was made. In this way, all of the training examples are independent, so we can train from any
subset. When we test, we reduce the capacity in each exam slot by the number of training
examples that selected that slot. In this way, a slot that filled in the original data set will fill in our
simulation when the same number of reservations from the test set are assigned to that slot as
actually chose that slot.

For the data that follows, sixteen randomized 70-30 train-test splits were done on the Fall 2015
data, processed in the same way as the previous section. Each split was trained against its unique
train data, then tested against its test data. For each split, the uniform model was also tested. Like
in the previous section, the fluid-limit algorithm was used to simulate the decisions based on the
optimized utilities. The errors were then compared with averaging and standard deviations.

5.2. Results

Table 3 and Table 4 show the results of the tests. The error is similar to that of the previous
section, accounting for the reduced number of decisions (and therefore slot usages) and has a low
deviation, which means that the model does not over-fit the data and mispredict on non-training
data. Again, each error metric shows that the model performs better than a uniform model. The
fact that MAE is higher than Median AE suggests that there are still some outliers which may be
better predicted by extending the model.

Table 3: Errors per slot over multiple train-test splits.
Uniform distribution Model

RMSE 3.349 (stddev 0.04454) 2.930 (stddev 0.1027)
MAE 2.254 (stddev 0.02226) 1.768 (stddev 0.04346)

Median AE 1.437 (stddev 0.08095) 0.9138 (stddev 0.04186)

Table 4: Errors per day over multiple train-test splits.
Uniform distribution Model

RMSE 19.12 (stddev 0.5253) 13.74 (stddev 0.7631)
MAE 12.35 (stddev 0.3037) 7.749 (stddev 0.4301)

Median AE 6.992 (stddev 0.8363) 2.939 (stddev 0.4564)



6. Visualization

Figure 6 shows the visualization of the model’s simulation for the Spring 2017 semester, trained
on data from Fall 2016. Our CBTF’s administrators modify the exams schedule until no exam slot
is predicted to be over capacity and as few slots as possible are over 90% capacity.

The Y-axis labels the date, including a 0-indexed week number. White spaces represent dates
without exams. Dark spaces have less usage, while lighter spaces have more.

Figure 6: Spring 2017 predictions based on Fall 2016 data.
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7. Conclusion and Future Work

Through multiple semesters of use, this model, using discrete choice with utilities based on the
number of remaining days in an exam period and the time and date of a slot, has proven effective
at predicting students choices of exam slots. Coupled with the fluid-limit algorithm, it provides an
interactive capability for capacity planning at our CBTF (Computer-Based Testing Facility). The
efficiency of the fluid-limit algorithm is derived from the fact that it doesn’t have to consider each
student’s decision individually, instead treating them as a deterministic, homogeneous continuum.

This determinism is, however, also a shortcoming of the algorithm. We know that, while the
model is predictive, the students aren’t going behave exactly as the model predicts. We’d like to
be able to compute error bars on the predicted utilization and probabilities of over-subscribing a
given day. This is not straight-forward with a deterministic simulation.

An alternative to the fluid-limit algorithm is to use a discrete choice simulation and allocate, for
example, individual students to exam slots randomly using probabilities derived from the model.
With such a non-deterministic approach, Monte Carlo methods could be used compute the
aforementioned error bars and probabilities.

Additionally, the model could be expanded and refined to handle special cases, like final exams.
While the proposed model produces good results for exams during the semester, the behavior of
students around finals seems to be different. Specifically, some students appear to prefer to take
exams as early as possible such that they can leave campus early, or prefer a weekend time when
no traditional exams are running (traditional final exams aren’t scheduled on weekends, but
students can choose to take exams in the CBTF on those days). Similarly, student behavior may
differ around breaks, as students may want to start break early or not take exams so close to when
classes resume. These behaviors may be captured within the variables we’re already considering,
but new factors may be required to describe them.
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