
A Validated Scoring Rubric for Explain-in-Plain-English
Questions

Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, Craig Zilles
[chen386,sazad2,rhaldar2,mwest,zilles]@illinois.edu

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Figure 1: Example of a code reading question and scored student responses.

ABSTRACT
Previous research has identified the ability to read code and under-
stand its high-level purpose as an important developmental skill
that is harder to do (for a given piece of code) than executing code
in one’s head for a given input (“code tracing”), but easier to do
than writing the code. Prior work involving code reading (“Explain
in plain English”) problems, have used a scoring rubric inspired by
the SOLO taxonomy, but we found it difficult to employ because it
didn’t adequately handle the three dimensions of answer quality:
correctness, level of abstraction, and ambiguity.

In this paper, we describe a 7-point rubric that we developed for
scoring student responses to “Explain in plain English” questions,
and we validate this rubric through four means. First, we find that
the scale can be reliably applied with with a median Krippendorff’s
alpha (inter-rater reliability) of 0.775. Second, we report on an
experiment to assess the validity of our scale. Third, we find that a
survey consisting of 12 code reading questions had a high internal
consistency (Cronbach’s alpha = 0.954). Last, we find that our scores
for code reading questions in a large enrollment (N = 452) data
structures course are correlated (Pearson’s R = 0.555) to codewriting
performance to a similar degree as found in previous work.
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1 INTRODUCTION
Learning to program remains a challenge for many students [25].
One explanation for students having difficulty with learning to
write code is that courses often expect students to move quickly
from learning syntax to writing code, which induces a high extra-
neous cognitive load that inhibits student learning [22]. Previous
research (discussed in Section 2) has identified code tracing ex-
ercises, Parson’s problems, and code reading exercises as lower
cognitive load activities that are part of a loose hierarchy of skills
leading to the ability to write code.

In this paper, we focus on code reading, also called “Explain in
plain English” (EiPE) questions, like the one shown in Figure 1. In
these questions, a small code fragment is shown to a student, and
the student is asked to provide a high-level natural language (e.g.,
English) description of the code. Code reading questions are chal-
lenging because one needs to consider how the code behaves over
all possible inputs and express that behavior at a high-level of ab-
straction. Code reading questions also exercise students’ technical
communication skills.

In contrast to code tracing and Parson’s problems, which have
been widely used in introductory programming instruction [7, 21],
code reading exercises appear to have largely been used in the
context of research studies. In the process of deploying code reading
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Table 1: A SOLO taxonomy developed to score code reading questions by Whalley, et al. [27]
Category Description
Relational Provides a summary of what the code does in terms of the code’s purpose.
Multistructural A line by line description is provided of all the code. Summarization of individual statements may be included
Unistructural Provides a description for one portion of the code (i.e. describes the if statement)
Prestructural Substantially lacks knowledge of programming constructs or is unrelated to the question

questions in an assortment of introductory programming courses,
we found that it was difficult to achieve high inter-rater reliability
with previous rubrics.

Previous work has used a Structure of the Observed Learning Out-
come (SOLO) taxonomy [2] for evaluating code reading questions,
as shown in Table 1. At first, we attempted to code our responses
using a similar 4-point scale but found it to be too unreliable. We
found that many student responses were difficult to reliably assign
to a single category and, with so few categories, off-by-one errors
led to low inter-rater reliabilities. In particular, for the question in
Figure 1, we struggled with answers like “place of smallest” and
“this function will print the location of the smallest array element”1.

We found that the source of our scoring difficulty arose from the
fact that student answers varied importantly in three dimensions:
level of abstraction (as per the SOLO-inspired scale), correctness,
and ambiguity. Furthermore, each of these dimensions is continu-
ous; there are many degrees of incorrectness and ambiguity. We
briefly considered coding the statements with three-tuples where
each dimension was on a multi-point scale. We discarded this idea
because not only would it be time consuming for graders, but a
large fraction of the space isn’t particularly important to distin-
guish. For example, if an answer has low correctness, we are less
concerned whether it is also ambiguous or low level.

Our effort to produce a reliable scoring rubric led us to develop
a 7-point scale (Section 4). While we make no claims that this scale
is definitive, we demonstrate the construct’s reliability and validity
in four complementary ways in Section 5: (1) by measuring inter-
rater reliability, (2) by assessing the degree to which it predicts
other experts relative ranking of student responses, (3) through
measuring internal consistency of a survey containing a collection
of EiPE questions, and (4) through correlations between students
scores on EiPE questions and the other questions on their exams.

2 BACKGROUND
Problem solving appears not to be the primary difficulty in learning
to program [10, 13]. Studies show that many non-programmers can
produce natural language algorithms [15, 20], but do so in a manner
that precludes direct translation into a program for novices (e.g.,
using set operations instead of iteration with conditionals [15]).

Instead, researchers theorize that there is a loose hierarchy of
programming skills where code writing is at the top of the hierarchy
and many programming students struggle with tasks lower in the
hierarchy [11, 29]. These skills span from understanding syntax
(as the easiest), to code tracing (executing code in your head for
one particular input), to code reading/explaining (abstracting the
behavior of code across all inputs), to code writing (as the most
complex) [11]. It has been shown that for a given piece of code,

1These answers are scored as 3 and 2 on the 7-point scale introduced in this paper.

task difficulty generally increases as we move up the hierarchy
(e.g., tracing a swap vs. reading/explaining a swap vs. writing a
swap) [14, 27], and students’ mastery of the lower-level skills is
predictive of their code writing ability [6, 12, 14, 24]. In particular,
Lopez et al. [14] find that students’ performance on tracing and
code reading questions account for 46% of the variance in their
performance on code writing questions on a paper exam. Murphy et
at. [16] found that this correlation replicates when the programming
exam is performed on a computer. Lister et al. state that, while their
data doesn’t support the idea of a strict hierarchy, “We found that
students who cannot trace code usually cannot explain code, and
also that students who tend to perform reasonably well at code
writing tasks have also usually acquired the ability to both trace
code and explain code.” [12]

Whalley argues that in order for a novice to write a particular
piece of code, that they must be able to comprehend that same
piece of code and the knowledge and strategies within it [27]. In
particular, the important skill that programmers need to achieve
is the ability to understand a piece of code at the Relational level,
meaning that one can provide a summary of what the code does
in terms of the code’s purpose [27]. This is opposed to a simpler
Multistructural level, where a student can only provide a line-by-
line explanation of the code. Longitudinal studies have shown that
students who are unable to explain code relationally early in the
semester have difficulty writing code later in the semester [6].

It has been proposed that novice instruction should focus more
on code tracing and reading [1, 4, 5, 12, 17, 18, 28]. Lister et al. state,
“It is our view that novices only begin to improve their code writing
ability via extensive practice in code writing when their tracing
and explaining skills are strong enough to support a systematic
approach to code writing [. . . ] Until students have acquired minimal
competence in tracing and explaining, it may be counter productive
to have them write a great deal of code.” [12] While all published
works involving code reading questions have been on summative
assessments, Corney et al. suggest that “the value of explain in plain
English problems may therefore be more as formative assessment
rather than summative assessment” [5].

The only recent study we identified on code reading questions
studied giving 12 Explain in plain English questions on a paper
final exam for 334 students [19]. The authors studied the word
usage differences of students that reliably answered the questions
compared to students that struggled with the questions, finding
that the former are more meticulous in their word usage.

3 DATA SET
With the assistance of colleagues, we posed a total of 52 code reading
questions to students at a large, public US university. The bulk of
these questions were included on online homework [26] and/or
computer-based exams [30, 31] in three courses: 1) 8 homework
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Table 2: Sources of student data

Context No. of
students

No. of
questions

Avg. responses
per question

CS1 for engineers 631 8 583
CS1 for CS majors 590 5 282
Data structures 553 26 105
Survey 93 13 92

problems in a ‘CS1 for engineers’ course, 2) 5 homework and exam
problems in a ‘CS1 for CS majors’ course, and 3) 26 exam problems,
of which each student was assigned one problem on each of 5 exams,
in a data structures course. Students were provided course credit
for completing these questions. These questions predominantly
involved arrays and loops, except in the data structures course,
which also included questions involving lists and trees.

In addition, 13 questions were posed as part of a paid survey
that was offered to sophomore-level CS students. The survey was
entirely optional, and students were given a $5 gift card for com-
pleting the survey. Counts of the questions posed and total number
of responses received and coded can be found in Table 2. Altogether,
we collected and scored 10,024 student responses.

We designed our questions as much as possible to be straight-
forward implementations of common, level-appropriate tasks or
using common patterns that can be described using a short (12 or
less words) sentence. In particular, our code reading questions are
not intended to be puzzles; they avoid using tricks and uncommon
syntax. After our initial trials, students were provided with samples
of desirable and undesirable answers to an example question. We
found that students were otherwise prone to give long, low-level,
and over-complete answers, which are both more time consuming
to score and often don’t demonstrate whether the student is capable
of a brief, high-level description.

4 OUR 7-POINT SCALE
After reviewing a number of responses that raters had scored dif-
ferently, we ultimately settled on the 7-point scale (0–6) shown in
Table 3. While our results in Section 5 suggest that there is some
utility to this scale, we are by no means suggesting that this is
the only useful scale, and we recognize some of its shortcomings.
Nevertheless, we find that the additional categories help distinguish
responses that were unnecessarily ambiguous in the smaller scale,
and the ambiguity that remains seems unlikely to be significantly
improved by further discretization, as it largely results from inter-
preting the responses rather than from mapping them to scores.
Our finding here is in line with previous research which finds that
7-point scales result in stronger correlations with t-test results [9]
and that inter-rater reliability generally increases steadily up to 7
scale points, beyond which no substantial increases occur [3].

In mapping the three-dimensional space of (level of abstraction,
correctness, ambiguity) to a linear scale we (in hindsight) most
valued answers that were correct and at a high level of abstraction,
but we were more tolerant of ambiguity. If aspects of an answer
potentially fit multiple categories, we assigned the answer to the
lowest category.

Table 3 provides example responses in each category for the
code fragment in Figure 2. A few additional examples drawn from

Figure 2: Code for reducing each vector element by a speci-
fied value.

the code in Figure 1 are potentially useful for illustrating how we
distinguish different answers at a low-level of abstraction. The re-
sponse “Stores the smallest value of an int array in x and stores
the index of the said smallest value in y.” we score as 4 because it
references local variables without indicating that one of them is a
return value. Since programmers often implicitly refer to a value
being returned (e.g., “find out the index of the minimum integer in
the array.” which is scored as 6), we don’t require answers to ex-
plicitly specify this. However, we find that assuming that a value is
returned is much less obvious when the response indicates that the
value is written to a (local) variable. The following is representative
of answers that are so low-level that we score them as 1 because
they show no ability to raise the level of abstraction.

“The function f has a return type of int and takes in a
first dimension int array. It declares an int x and sets
it equal to the first value of the passed array. Then,
it declares int y and sets it 0. Then, it runs a for loop
that compares x to the other values in the array. If x
is greater than the next value of the array, it will set
that value to x and the indicie of that value to y. At
the end, function f will return the last indicie of the
array value which was greater than x.”

4.1 Training procedure
The two members of our research team that developed the 7-point
scale trained five additional annotators to distribute the scoring
load. The training consisted of three steps. First, the new annotators
were provided with textual descriptions of the scores as in Table 3
along with two to three examples of student responses at each level
of the scale and any questions they had were answered. Second,
new annotators were asked to score a dozen previously-scored
student responses chosen to represent a variety of different kinds of
student answers and feedback was provided. The third step was a
repeat of the second step with an additional set of response. At this
point, scores had sufficiently converged to consider initial training
complete

4.2 Scoring procedure
The following procedure was performed by the trained annotators
to score all of the student responses. First, two annotators indepen-
dently scored the student answers. For any responses where these
two scores matched, the score was considered final. The remaining
responses were sent to a third annotator, who independently scored
them. This third annotator would then consider all three scores and
assign a final score for any responses they felt comfortable doing
so. Final scores for the remaining responses were established by a
process of discussion and reconciliation between all three raters
until consensus was reached.
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Table 3: 7-point scale for scoring code reading questions based on level of abstraction, correctness, and ambiguity.

Score Description Example (See: Figure 2)
6 Clearly and correctly articulates all of the key ideas at a suitably high level of

abstraction, with nothing confusing or wrong. May also include lower-level
descriptions, as long as they are consistent with the code. Spelling mistakes are
allowed, but the English must be generally correct.

“Decreases every value in x by y.”—Howwemight
have said it

5 Articulates key ideas at a high level of abstraction, but contains improper or
incorrect English usage or syntax. No obviously incorrect programming language
interpretations.

“Decrease every x in the array by y.” — x was the
name of the array variable

4 Articulates key ideas, but an incorrect interpretation is possible due to imprecise
use of language or an insufficiently high level of abstraction. It is likely that the
student did understand the purpose of the code, and the errors are in the writing.
A notable example in this category is explicitly saying that the code modifies a
local variable without indicating that the local variable is returned.

“Every elements in x[] minus y and the result is
stored in previous position.” — “previous” could
mean that element i is being moved to index i − 1,
but I think they mean stored where it came from

3 Does not contain enough information to be clearly categorized as absolutely right
or wrong. For example, some of the key ideas are not articulated, but nothing
clearly wrong is stated.

“This function decreases scale of vector x by
y.” — Changing scale usually means multiplica-
tion/division, but could mean subtracting

2 Articulates most of the correct ideas at a high level of abstraction, but at least
one thing is clearly wrong.

“Sets all the elements in the vector x equal to -y.”—
Recognizes the same thing is done to every element
but thinks it is assignment instead of subtraction

1 Demonstrates some understanding of the code beyond the types of statements,
but is far from constructing a high-level description. Either uses a very low level
of abstraction or contains multiple errors.

“Subtracts a vector into another vector.” — Recog-
nizes that subtraction is being performed somehow
on a vector

0 Shows no understanding of the code beyond that it is a collection of statements
in a programming language. May include true statements about the code (e.g.,
English transliterations of statements in the code), but shows almost no ability
to correctly interpret code behavior.

“Create a vector named x and each element of x
is y-1.” — Doesn’t create a vector, no elements are
y − 1
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Figure 3: Distribution of scores for each course.

4.3 Distribution as a function of population
Figure 3 shows the distribution of final scores from the four sources.
For all sources, the mode was 6, suggesting that each population
received questions that were at a reasonable level of difficulty for
them. Three of the populations (CS1 for majors, data structures, and
survey) had nearly identical distributions, with roughly 70% 6s, 10%
2s, 5% 4s and a smattering of the other scores. The CS1 for engineers
course had fewer strong answers (just under 50% 6s) and over 10% in
each of 0s, 1s, and 2s.We believe that two factors could have affected

the distribution: 1) these students had weaker programming skills
at the time the questions were deployed, and 2) only this class used
a dynamically-typed language (Python) and our questions didn’t
provide type information for the function arguments, which (in
hindsight) clearly makes the questions harder because they require
the reader to perform type inference. At present, we don’t know
the relative contribution of these two effects.

5 RELIABILITY AND VALIDITY
The proposed 7-point scale only meaningfully measures a construct
if it can be reliably measured and others agree that the construct
has meaning. We performed four analyses: inter-rater reliability,
consistency with expert orderings of student responses, internal
consistency, and correlation to other programming related skills.

5.1 Inter-rater reliability
Inter-rater reliability indicates how reliably two annotators can as-
sign the same or nearby scores, which is indicative of the existence
of a construct and the ability to teach someone to be able to measure
it. In this work, we computed the inter-rater reliability between the
two initial annotators for each question. Because our data is interval
in nature, we used Krippendorff’s alpha with interval metric [8]
for our evaluation. A Krippendorff’s alpha of 1 indicates perfect
agreement, 0 means that the agreement is no better than chance,
and -1 indicates perfect disagreement. The usual cutoff for reliable
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Figure 4: The distribution of Krippendorff’s alphas for each
annotated question between the two initial annotators.

annotations is 0.8 [8]. We calculated Krippendorff’s alpha between
the two initial annotators for each annotated question. The distri-
bution of the alphas is plotted in Figure 4. Of the 52 questions, 22
of them (42.3%) had α > 0.8, and 15 of them (28.8%) had α between
0.667 and 0.8. The median Krippendorff’s alpha was 0.775.

We examined the data for the two outlier cases with low alphas.
The question with the negative alpha is explained by the fact that
our annotators don’t communicate extensively before coding each
question. In this particular question, the two annotators had dif-
ferent standards for what was needed for a correct answer. The
code we posed to the students was to print integers in a given
array, each on their own line. One annotator consistently scored
answers without the notion of “each on their own line” as 3 while
the other annotator consistently scored similar answers as 6. As
such, it is not surprising that they achieved an alpha worse than
chance. We view the relative infrequency of this occurring in spite
of our lack of communication as a testament to the independence
of the scale to the specifics of a given prompt. The explanation for
the other outlier is more subtle; the frequency and magnitude of
the disagreements for that question were similar to other questions,
but because the question had the highest concentration of answers
in three adjacent categories (97% of responses were scored as 4, 5,
or 6) the denominator of the alpha computation was lower, so our
errors represented a larger fraction of the mis-labelling that would
happen by chance for such a distribution of answers.

While these inter-rater reliabilities are encouraging, it does show
that humans remain somewhat error prone in performing this task.
In addition, it motivates the continued use of multiple raters and a
reconciliation process (Section 4.2) to achieve reliable scores.

5.2 Consistency with expert rankings
Even if a construct exists and is teachable, it is only meaningful
if others find meaning in it. We conducted a study to evaluate the
validity of the 7-point scale by asking instructors of introductory
programming courses with no knowledge of our scale to order
collections of four student answers from best to worst.

At the same university where the student data was collected,
faculty involved in introductory programming were contacted to

Figure 5: The main interface for the validity questionnaire.
Participants were asked to rank the responses below in
terms of their descriptions of the code above.

identify a few of the most experienced and conscientious teaching
assistants. Eleven faculty and 16 teaching assistants (TAs) were then
invited to the study by email with a link to an online questionnaire.
The questionnaire contained items that display a snippet of code
and four anonymous students’ responses, as shown in Figure 5.
These responses were randomly selected so as to have different
scores on our scale by first randomly selecting four different scores
and then randomly selecting responses with the corresponding
scores. A total of 11 questions with a wide range of scores from our
annotated datawere used in the questionnaire. Each of the questions
was repeated three times with randomly selected responses, which
resulted in 33 items in the questionnaire. The participants were
asked to drag and drop the responses to order them from the best
(at the top) to the worst (at the bottom) in terms of describing the
code snippet. Participants were never informed about the existence
and details of the 7-point scale. Instead, they were asked to consider
the following when ranking responses:

• Which student statements give you the most confidence that
the student understands the purpose of the code (i.e., what
the code accomplishes).

• Ideally, their statements should be unambiguous, brief, at a
high-level of abstraction, written in English, and completely
correct.

• We aren’t concerned with incorrect spelling/grammar that
doesn’t interfere with you interpreting their descriptions.

Participants were compensated with a $30 gift card for completing
the questionnaire. Six faculty and nine TAs completed the entire
questionnaire for a 56% response rate.
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pants in the validity study and our annotations as a function
of the difference in score between each pair of responses.

We computed the number of agreements between the partici-
pant rankings and our 7-point-scale scores as follows. Each survey
question involved ordering four statements, yielding six pair-wise
comparisons. For each pair, if the participant ranked higher the
higher-scoring response, we count it as one agreement. In Figure 6,
we plot the proportion of agreements p as a function of the distance
between the scores of the two responses, along with their 95% con-
fidence intervals. As can be seen, when we’ve scored responses in
adjacent categories on the 7-point scale, participants agreed with
our annotations 65% of time. As the score distance increases to 2, the
percentage of agreements increases to around 80% and continues to
increase from there. These results suggest that the 7-point scale is
broadly in agreement with the intuitive responses from experienced
instructors. Furthermore, these results match our experience from
scoring responses, in that it can sometimes be difficult to choose
between an adjacent pair of categories when scoring a response, but
rarely is it hard to narrow a response down to a pair of categories.
Finally, we found that there wasn’t any particular pair of scores
that were disproportionately mis-ordered.

5.3 Internal consistency
Internal consistency is the degree to which several items (on a given
assessment) that propose to measure the same general construct
produce similar scores. In this respect, we would expect a degree
of internal consistency in any situation where we ask students a
collection of code reading questions of similar difficulty all at the
same time, as they are all assessing a students’ ability to generate
high-level descriptions of code. The first survey that we conducted
(described in Section 3) fits this description, as all 92 survey respon-
dents responded to the same 12 code reading questions at one point
in time. We computed a Cronbach’s alpha of 0.954 for this survey,
which indicates high internal consistency [23].

In all of our other data sources, each student responded to fewer
questions and the responses were collected over a longer period
of time (a few weeks to a few months) where learning could occur
between questions. In addition, in two of the courses, students

were given a random subset of the code reading questions, and
Cronbach’s alpha is not robust to missing data.

5.4 Correlation to other skills
Since previous work [14, 16] has demonstrated that code reading
skill is associated with code writing skills, we investigated how our
students’ exam performance on code reading questions correlated
to their other exam questions. The student responses collected from
the data structures class was used for this analysis since it was the
only class that used code reading questions extensively in exams. In
the data structures class, exam questions can be separated into three
types: code reading questions, code writing questions, and multiple
choice questions that mainly focus on understanding concepts such
as time complexity. Of the 553 students that completed at least the
pre-requisite exam (offered in the second week of classes), we ex-
cluded 101 students from the analysis because they did not attempt
a large portion of either the code writing questions or multiple
choice questions. This resulted in 452 students for the analysis.

Because students received different subsets of the code reading
questions, we first applied z-score standardization on a per ques-
tion basis to account for the variations in question difficulty. After
standardization, we computed the average z-score for each student
to account for the fact that some students answered fewer code
reading questions. For aggregated measures of performance on
code writing questions and multiple choices questions, we simply
summed each student’s score on the two types of questions sep-
arately and then applied z-score standardization to the sums. We
then computed Pearson’s correlation on code reading questions
against the other two types of questions.

For code writing questions, the correlation is 0.555, which is
significantly positive (p < 0.0001). This result is surprisingly close
to the correlation coefficient reported by Lopez et al. [14], which is
0.559. Also, it should be noted that we don’t expect perfect corre-
lation between reading and writing code, as they are significantly
different activities, so this correlation is in a range that makes
sense. For the multiple choices questions, the correlation with code
reading questions is 0.468 (significantly positive, p < 0.0001). In
hindsight, it makes sense that code reading is more correlated with
code writing than the knowledge related to properties of data struc-
tures tested by these multiple choice questions.

6 CONCLUSION
In this paper, we have attempted to share our experience with
scoring ’Explain in plain English’ (EiPE) questions deployed into
a number of contexts. Our primary finding is that student answer
quality varies in three dimensions: correctness, level of abstraction,
and ambiguity. We demonstrated, at least at one institution, that
a scoring rubric developed using these three dimensions can be
reliable, can be reliably taught, lines up with the intuition of experi-
enced instructors, can yield internally consistent instruments, and
is appropriately correlated to code writing ability. This work has
only strengthened our belief that EiPE questions have significant
potential in programming instruction and are under-utilized. Future
work should explore reducing the effort of grading these questions
so that they will be used more broadly.
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