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Abstract
Background: When students are given a choice of when to take an exam in engi-

neering and computing courses, it has been previously observed that average exam

scores generally decline over the exam period. This trend may have implications

both for the design of interventions to improve student learning and for data

analysis to detect collaborative cheating.

Purpose/Hypothesis: We hypothesize that average exam scores decline over the

exam period primarily due to self-selection effects, where weaker students tend to

choose exam times later in the exam period, while stronger students are more

likely to choose earlier times.

Design/Method: We collected 31,673 exam records over four semesters from six

undergraduate engineering and computing courses that had both synchronous

exams (all students at the same time) and asynchronous exams (students choose a

time). We analyzed student exam time choice and asynchronous exam scores,

using synchronous exam scores in the same course as a control variable.

Results: We find that students with lower scores on synchronous exams generally

elect to take asynchronous exams later and that controlling for student ability (via

synchronous exams) removes 70% of the decline observed in average asynchro-

nous exam scores over the exam period but does not eliminate the downward trend

with time.

Conclusions: We conclude that self-selection effects are primarily responsible for

exam score declines over time, that exam time selection is unlikely to be a useful

target for interventions to improve performance, and that there is no evidence for

widespread collaborative cheating in the dataset used in this research.
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1 | INTRODUCTION

There has been significant pressure on universities to increase the number of engineers graduating each year to meet work-
force needs and maintain national competitiveness, and universities have responded to the call. From 2009 to 2016, the
number of students awarded bachelor's degrees in engineering among major universities in the United States has increased by
approximately 50% (Gibbons, 2009; Yoder, 2016), with the larger institutions growing disproportionately more quickly.
A result of this growth is that in 2017, 46.6% of the bachelor's degrees in engineering were awarded by only 50 of the
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305 institutions tracked by the American Society for Engineering Education (ASEE) (Yoder, 2017). This growth and concen-
tration of students necessitate teaching techniques and tools that can maintain excellence at scale.

One aspect of teaching where scale and excellence are frequently at odds is assessment. For the past 30 years, assessing stu-
dent outcomes has been recognized as the centerpiece for evaluating engineering education and hence plays a central role in
both the accreditation of engineering programs via ABET and the feedback loop used to improve classes and programs
(Engineering Accreditation Commission, 1998; Olds, Moskal, & Miller, 2005; Shaeiwitz, 1996). For content-based competen-
cies (e.g., problem-solving, interpreting data, applying knowledge/skills), the most commonly mentioned assessments in the
literature are paper-and-pencil exams (Henri, Johnson, & Nepal, 2017).

Running paper-and-pencil exams for large classes (e.g., 200+ students) presents management challenges that include
requesting space, printing exams, proctoring, timely grading, and handling conflict exams (Lee, Garg, Bygrave, Mahar, &
Mishra, 2015; Muldoon, 2012; Zilles et al., 2015). These logistic burdens discourage faculty from using pedagogies that have
been shown to improve student learning, such as frequent testing (Bangert-Drowns, Kulik, & Kulik, 1991; Leeming, 2002)
and mastery learning (Kulik, Kulik, & Bangert-Drowns, 1990; Pennebaker, Gosling, & Ferrell, 2013), and have led to the
overuse of multiple-choice exams (Scouller, 1998; Stanger-Hall, 2012).

Computer-based exams have been proposed as a means of mitigating the tension between scale and excellence in assess-
ment in engineering classes (DeMara et al., 2016; Shacham, 1998; Zilles et al., 2015). Such exams allow a broad range of
questions (e.g., numeric, graphical, symbolic, programming, and drawing) to be autograded and to provide students with
immediate feedback (Carrasquel, 1985; Rytkönen & Myyry, 2014; Shacham, 1998; West, Herman, & Zilles, 2015). Several
studies have demonstrated the validity of computer-based testing across a broad range of subjects (Bodmann & Robinson,
2004; Boevé, Meijer, Albers, Beetsma, & Bosker, 2015; Bugbee Jr., 1996; Cagiltay & Ozalp-Yaman, 2013; McDonald, 2002;
Prisacari & Danielson, 2017; Zandvliet & Farragher, 1997).

Computer-based testing is particularly well suited for courses in engineering and, more generally, in the other three STEM
fields of science, technology, and math. Significant amounts of the material in these courses have two important properties:
(a) students' responses are well suited for digitization, and (b) these responses can be graded automatically (i.e., it is possible
to write a computer program that can score a student's answer) (West, Herman, & Zilles, 2015). This type of evaluation is
especially true in analysis classes (e.g., statics, thermodynamics), but some design tasks are also amenable to this evaluation
by creating tests that evaluate whether a student's solution exhibits the desired properties (e.g., whether a beam designed in a
computer-aided design tool meets given stiffness and weight criteria or whether a program computes the right answer for a
variety of inputs). Importantly, the use of computer-based assessment does not preclude having assessments that are not
autogradeable in a course; in fact, the use of computer-based testing, where appropriate, can free faculty's/course staff's time
to include more tasks that benefit from expert input (e.g., projects, lab reports, etc.) in the course (Essick, West, Silva,
Herman, & Mercier, 2016; Sanders, West, & Herman, 2016; West, Silva-Sohn, & Herman, 2015).

Much of the management of giving exams can be alleviated while maintaining exam security by running computer-based
exams in a centralized proctored facility (Bugbee & Bernt, 1990; DeMara et al., 2016; Rytkönen & Myyry, 2014; Zilles,
West, Mussulman, & Bretl, 2018). To handle the varied constraints of student schedules and classes with more students than seats in
a proctored computer testing center, common practice is to offer computer-based exams asynchronously (i.e., allowing students to
take their exams within a given time window, usually several days) (DeMara et al., 2016; Stehlik &Miller, 1985; Zilles et al., 2018).

Because allowing students to choose their exam time is an unusual feature in traditional university environments, it is
important to study students' behavior in such settings. Chen, West, & Zilles (2017) investigated a set of asynchronous comput-
erized exams with randomized questions and found that students tend to choose later time slots, and exam scores generally
decline throughout the exam period. Figure 1 shows these two phenomena for one asynchronous computerized exam. How-
ever, the cause of these phenomena is unclear. One possible hypothesis that deserves particular attention is that stronger stu-
dents choose to take asynchronous exams whenever they feel ready, while weaker students choose to take asynchronous
exams later.1 This hypothesis is consistent with the finding of a robust negative correlation between students' measured pro-
crastination and their academic achievement (Kim & Seo, 2015).

It is important to understand what is causing asynchronous exam scores to decline over time. If there is no separate medi-
ating variable such as student ability, then it could mean that (a) exam time choice alone can have a detrimental impact on stu-
dents' performance, and it is perhaps advisable to have some intervention in place to help students overcome nonideal exam
time choices, and (b) collaborative cheating, where students who have already taken the exam share the exam questions with
other students, is either not widespread or is ineffective.

In fact, faculty who consider the use of asynchronous computerized exams in their courses often question the potential for col-
laborative cheating resulting from the asynchronous nature of the exams. It seems initially reasonable that students taking the
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exam on the first day would tell their friends the exam questions, giving students taking the exam later an unfair advantage. In
fact, in a previous survey of undergraduate students, the most reported cheating mechanism was that they had “received answers
to a quiz or test from someone who has already taken it” for face-to-face classes (Watson & Sottile, 2010). If such cheating was
effective and widespread, we would expect to see exam scores increase through the course of the exam period.

This paper, thus, aims to test the hypothesis that stronger students tend to choose to take asynchronous exams earlier than
weaker students and that this is primarily responsible for the decline observed in the average score over the exam period for
asynchronous exams. Previous work has attempted to address this hypothesis; however, the amount of data used in the
analysis was not sufficient to draw any firm conclusion (Chen et al., 2017). In this paper, with a much larger dataset consisting
of 81 asynchronous exams and 15 synchronous exams, we show that this self-selection effect indeed largely explains the
observed decline in exam scores, although not all of it. The resulting slope is still negative (statistically significant with
p< .0001), suggesting that unexplored factors have a larger impact on the negative slope than the benefit of collaborative
cheating.

The remainder of the paper is organized as follows. In Section 2, we briefly describe relevant studies. In Section 3, we
introduce the setting under which the data were collected and describe the analysis procedures. We then present the results in
Section 4, discuss the implications in Section 5, and point out limitations of our study in Section 6. Finally, we provide a sum-
mary in Section 7.

2 | LITERATURE REVIEW

Kreiter, Peterson, Ferguson, and Elliott (2003) conducted a set of three asynchronous exams over 2 days in a clinical practice
course of approximately 200 students at a Midwestern medical college. Each student was randomly assigned to take each of
the three exams on one of the 2 days. Each of the three exams was kept the same over the 2-day period. Kreiter et al. (2003)
reported no significant differences between students' performance on Day 1 versus Day 2 for each exam. This finding suggests
that using a single test form for asynchronous exams spread over 2 days does not compromise the integrity of the exam results
as long as students are randomly assigned when to take the exam. There are a few studies that describe experiments with
computer-based exams in lab sections (i.e., asynchronous but at times that students chose before the start of the class) for com-
puter science courses, but none of them has reported score trends over time (Barros, Estevens, Dias, Pais, & Soeiro, 2003;
Bennedsen & Caspersen, 2006; Califf & Goodwin, 2002; Jacobson, 2000).

Between 2003 and 2005, Burns, Garrett, and Childs (2007) ran 13 asynchronous computer-based exams for a microscopic
anatomy course, with approximately 150 students for each exam. Each exam was identical for all students, and students were
allowed to choose when to take their exams. Burns et al. (2007) found that, in general, students who choose to take exams ear-
lier performed better than those who choose to take exams later.

Chen et al. (2017) analyzed a set of 93 asynchronous computer-based exams among nine engineering courses between
2015 and 2016 in a large public research university. In this dataset, most exams were slightly different for each student, and
students were allowed to choose when to take their exams. Chen et al. reported that students tended to choose later exam time
slots and that those students who elected to take the exam later performed worse on average than those who chose earlier
exam time slots.

During Spring 2009, Wagner-Menghin, Preusche, and Schmidts (2013) conducted an asynchronous paper-and-pencil
exam consisting of only multiple-choice questions. A total of 671 students were initially assigned to four time slots and
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FIGURE 1 Example data from one asynchronous exam (Class C3,
Asynchronous Exam 4) conducted over a 4-day period. Students' raw
scores are plotted against the day on which they took the exam, with the
intensity of each circle being proportional to the number of students with
that score on that day. The straight line is the ordinary least squares (OLS)
regression line of the exam score against the day of exam, demonstrating
in this case a negative correlation between the day on which the students
choose to take the asynchronous exam and their score. This asynchronous
exam has one of the more negative slopes in our data set, and we chose it
here because the highly negative slope is easy to discern [Color figure can
be viewed at wileyonlinelibrary.com]
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allowed to reschedule their exam times as they wished. By comparing the difficulty of reused items using the Rasch Model,
Wagner-Menghin et al. (2013) observed that reused items became easier after their first use.

The relationship between procrastination and academic performance has been extensively studied (see Kim & Seo, 2015,
and studies cited therein). Procrastination is widespread among college students, with estimates of up to 80–90% of students
engaging in it (Steel, 2007). There has been debate as to whether procrastination should be regarded as a task-specific
behavior or as a personality trait that is stable across time and context (Schouwenburg, 2004), although it is now more
common to adopt the latter (Kim & Seo, 2015). While there has been significant disagreement in the literature between studies
finding that procrastination does not affect academic performance (e.g., Seo, 2011; Solomon & Rothblum, 1984) and those
finding that it does (e.g., Aremu, Williams, & Adesina, 2011; Balkis, Duru, & Bulus, 2013), meta-analyses show that many of
these differences are due to underestimates of correlations from the use of self-reported data on both procrastination and per-
formance (Eerde, 2003; Kim & Seo, 2015). The best overall estimates show an average correlation of r = − .39, 95% CI
[−0.65,−0.13], between measured procrastination and measured performance (Kim & Seo, 2015).

3 | METHODS

3.1 | Data collection

The data were collected from a large R1 university in the United States during the Spring 2015, Fall 2015, Spring 2016, and
Fall 2016 semesters. The asynchronous exam data were taken from exams held in the Computer-Based Testing Facility
(CBTF) (Zilles et al., 2018) and administrated via the PrairieLearn system (West, Herman, & Zilles, 2015). The synchronous
exam data were provided by the corresponding instructors. A subset of these data, without the synchronous exam records,
were previously used in Chen et al. (2017).

The CBTF is a computer lab with 85 seats for students and another 4 seats in a reduced-distraction environment for stu-
dents registered with the disability resource center. Each of the computers is outfitted with a privacy screen that prevents test
takers from reading the screens of neighboring computers, and the networking and file systems are strictly controlled (Zilles
et al., 2018). During the period studied, the facility was open and proctored 10–12 hr a day, 7 days a week to accommodate
2,000–4,000 exams per week. Students were not permitted to take written notes, photos, or other records into or out of the
exam room. At their scheduled exam time, students had their identity checked by a proctor and were randomly assigned to a
computer (to deter coordinated cheating).

Exams in the CBTF were typically administered as follows (Zilles et al., 2018): Classes were assigned a 3–5-day period
for the students to take an exam depending on the class size; longer exam periods were used during finals week. Students
were free to reserve any time during the exam period, provided that there were slots available at that time. Sign-ups for exams
typically started 2weeks before the exam period began. Generally, the periods of exams from different classes overlapped one
another, and the CBTF was almost always running several distinct exams concurrently.

PrairieLearn is an online problem-posing system that permits the specification of automatic item generators (AIGs) (Attali,
2018), each of which is capable of generating a range of parameterized problem instances (West, Herman, & Zilles, 2015). A
variety of problem types can be specified, including but not limited to numeric, graphical, symbolic, programming, and
drawing problems. For exams, PrairieLearn selected random problem generators from a pool of available generators and ran-
domly generated problem instances from those generators to meet instructor-defined coverage and difficulty criteria. Students
sitting next to each other in the CBTF were typically taking exams from different courses, but even if they were taking the
same exam, they generally had different sets of parameterized questions or the same set of questions with different parameters.
PrairieLearn also supports allowing students to have multiple attempts at each question with a partial-credit schedule con-
trolled on a per-question basis.

For each student taking an exam in the CBTF, PrairieLearn logged all the submissions the student made during the exam
period and calculated and stored the final score based on the instructor's multiple-attempts scoring scheme.

3.2 | Data description and preprocessing

The courses studied are drawn from the introductory sequences in mechanical engineering (statics, dynamics, and strength of
materials) and computer science (intro to programming, computer organization, and system programming). The courses in
mechanical engineering are primarily focused on engineering sciences, while the courses in computer science involve a combi-
nation of computing science and code writing. As these courses are introductory, course material is primarily fixed with little
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variation even when different instructors teach them. The asynchronous exam material is usually first developed by a single
instructor over several semesters and then augmented by other instructors.

For each class in each semester, we obtained the information of all of the asynchronous exams in the form of class ID,
exam ID, start date, and end date. The class ID is a unique identifier to differentiate between each class in each semester. The
exam ID is a unique identifier for each exam. The start date is the first calendar day when students can take the exam. The end
date is the last calendar day when students can take the exam. We refer to the time period defined by the start date and the end
date as the exam period. The synchronous exam information is in the form of (class ID, exam ID), where class ID and exam
ID are the same as in the asynchronous case.

With the approval of the institutional review board, we obtained all of the students' asynchronous exam records in the
CBTF, as well as their synchronous exam records outside the CBTF, for each class in each semester. Each asynchronous
exam record has the form (exam ID, student ID, score, date, day, hour). The exam ID is the same as defined above. The stu-
dent ID is a unique identifier for a student regardless of class. The score is a real number ranging from 0 to 100. The date is
the calendar date when the student took the exam. The day is an integer ranging from one to the length of the exam period.2

The hour is an integer ranging from 0 to 23. Each synchronous exam record has the form (exam ID, student ID, score),
where they are the same as in the asynchronous case.

Given the raw asynchronous exam data, we used the following filters:

1. We excluded all optional second-chance asynchronous exams that allowed students to replace part or all of an earlier asyn-
chronous exam score by taking a second equivalent asynchronous exam at a later date.

2. We excluded students who took less than 50% of the nonsecond-chance asynchronous exams to avoid including course
staff members engaged in exam checking and students who dropped early in the semester.

3. We excluded students who did not have the corresponding synchronous exam records.
4. We excluded asynchronous exam records that were outside the corresponding exam periods.3

5. We excluded asynchronous exams whose score distribution's kurtosis was more than 10. These exams had an unusually
high number of scores that were greater than several standard deviations away from the mean.

The first three points primarily aim to filter out data irrelevant to the analysis. The fourth filter eliminates those asynchro-
nous exam records that are often outliers from the analysis as most students take exams within the exam period. The fifth filter
eliminates asynchronous exams that have large deviations from the mean, which could have unstable effects on the regression
coefficients. We also applied this filter to the synchronous exam data, and none of the synchronous exams was excluded.

We examined the statistical characteristics of exam score distributions after the above filtering for both synchronous and
asynchronous exam scores and found that they were similar to each other and match the characteristics of typical exam score
distributions reported in the literature. See Appendix A for more details.

The filtering resulted in 26,139 exam records from 81 asynchronous exams and 5,534 exam records from 15 synchronous
exams. A summary of the data is shown in Table 1. For courses with only one synchronous exam, these exams were either the
final exam or a midterm toward the end of the semester. For the course with three synchronous exams, these exams were mid-
terms and final.

Unfortunately, the data collected do not contain demographic information for the students; thus, our analysis focuses on
the population as a whole. As an estimate of the demographic composition of the students in the data, we reported the demo-
graphic information of undergraduates who graduated with degrees in each discipline during the calendar year of 2018 in
Table 2.

To analyze different exams with different score distributions together, we standardized all of the exam scores to z-
scores on a per-exam basis. Essentially, the standardized score measures how many standard deviations a particular
student's score is away from the mean. We refer to the exam scores after standardization as the standardized score. In
addition, for each class and semester, we define the synchronous score to be the average of all of the standardized scores
for synchronous exams. For example, if a class in a particular semester has three synchronous exams and a student's
standardized score for the three are −0.5, 1.0, and 1.0, then the synchronous score of the student is 0.5 for that particular
class in that semester.

Because asynchronous exams had different exam period lengths and the CBTF operation hours changed slightly from
semester to semester, scaling was necessary for the analysis to be meaningful. Specifically, we scaled the day of the exam
period to the range [0, 1], where the first day of the exam period is represented by 0 and the last day of the exam period is rep-
resented by 1. We scaled the hour of day to the range [0, 1], where the hour of the first asynchronous exam of each day is
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represented by 0, and the hour of the last asynchronous exam of each day is represented by 1. We refer to the day of exam
period and hour of day after the scaling as scaled day and scaled hour, respectively.

3.3 | Analysis

Our analysis consists of four parts. We first show the general trend of students' exam time choices in Section 4.1. We provide
the distribution of exam time choices for a typical asynchronous exam, as well as the overall trend. We then disaggregate stu-
dents into three groups based on their synchronous score to examine if there is any difference among students of different
levels of ability.

The second part of the analysis consists of examining the distribution of correlation coefficients between four pairs of mea-
sures. The first pair is between standardized scores of an asynchronous exam and the corresponding synchronous score. The
purpose of this pair is to determine how well asynchronous exam scores correlate with synchronous exam scores.
To determine whether the correlations between the first pair are reasonable, the ideal comparison would be the correlation

TABLE 1 Summary information of the data used in the analysis

Course
and
semestera Disciplineb

DFW
rate
(%)

Number
of
students

Number of
asynchronous
exams includedc

Number of
asynchronous
exams excluded

Number of
asynchronous exam
records excludedd

Number of
synchronous
exams

Class A2 ME 12.6 566 5 1 22 3

Class B2 ME 10.2 230 7 0 0 1

Class B3 ME 11.6 345 6 0 5 1

Class B4 ME 12.8 181 7 0 3 1

Class C2 CS 20.0 173 5 1 8 1

Class C3 CS 17.9 325 4 3 0 1

Class C4 CS 18.8 292 3 4 1 1

Class D1 ME 9.5 477 2 0 0 1

Class E1 CS 18.8 324 7 1 1 1

Class E2 CS 11.8 352 8 0 24 1

Class E3 CS 14.9 187 9 0 6 1

Class E4 CS 13.0 369 8 1 0 1

Class F4 CS 2.0 581 10 0 68 1

Total 81 11 138 15

Note: This table includes only nonsecond-chance exams. Some courses started using the CBTF/PrairieLearn environment in later semesters, and some courses stopped
running synchronous exams in later semesters. There is only one column for synchronous exams as none of them is excluded.
aEach course is indicated by a letter (A–F) and a number for the semester (1 =Spring 2015, 2 = Fall 2015, 3 = Spring 2016, 4 = Fall 2016).
bCS stands for computer science, and ME stands for mechanical engineering.
cBy “exams,” we mean a unique exam available to all the students of the course.
dBy “exam records,” we mean the record of an individual student taking an exam. See Section 3.2 for more details.

TABLE 2 Demographic information
of undergraduates who graduated with
degrees in each discipline during the
calendar year 2018 in percentages

Mechanical engineering Computer science

Female 15.1 21.1

International 20.9 33.8

Hispanic 7.5 2.1

Asian American 15.6 35.1

Black 0.9 0.4

White 50.7 26.9

Othera 4.4 1.7

aPeople who did not select Hispanic, Asian American, Black, or White.
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coefficients between scores of different synchronous exams for each class and each semester. Unfortunately, most classes had
only one synchronous exam as Table 1 shows. Instead, as the second pair, we compute correlations between the scores of
asynchronous exams that belong to the same class and same semester. The third pair is between the scaled day of an asynchro-
nous exam and the corresponding synchronous score. It is important to examine this pair because our hypothesis suggests that
it should be negative for most asynchronous exams. For comparison, we also study the correlation coefficients between stan-
dardized asynchronous score and scaled day of asynchronous exams as the fourth pair. We present the result of this analysis
in Section 4.2.

Our third analysis quantifies the effect on their performance when students choose to take asynchronous exams. We use
the same analysis techniques as in the previous work (Chen et al., 2017). Specifically, we regress the standardized score
against scaled day and scaled hour as follows:

zik = αk + βkdik + γkhik ð1Þ

where zik, dik, and hik are observed values from the data defined as follows:

zik is the standardized score of student i on asynchronous exam k
dik is the scaled day of student i taking asynchronous exam k
hik is the scaled hour of student i taking asynchronous exam k

αk, βk, and γk are the regressors that we want to calculate, defined as follows:

αk is the intercept for asynchronous exam k
βk is the coefficient that characterizes the effect of scaled day on scores for asynchronous exam k
γk is the coefficient that characterizes the effect of scaled hour on scores for asynchronous exam k.

The slope β is expressed in units of standard deviation per exam period, so a value of β = − 0.5 would mean, roughly
speaking, that the student asynchronous exam scores decline by half of a standard deviation from the first day to the last day
of the asynchronous exam. The slope γ is expressed in units of standard deviation per day, so a value of γ = − 0.1 means,
roughly speaking, that student asynchronous exam scores decline by one tenth of a standard deviation from the first hour of
each day to the last hour of each day. We refer to this regression as the uncontrolled regression and report the results in
Section 4.3.

As there are multiple independent variables in the regression, we report the maximum variance inflation factor (VIF)
(Kutner, Nachtsheim, & Neter, 2004) for each of the relevant regressors to examine if multicollinearity can undermine the
interpretability of the coefficients. The VIF for a particular regressor δk is defined as:

VIFδk =
1

1−R2
δk

ð2Þ

where R2
δk
is the coefficient of determination (correlation coefficient squared) for the regression of δk on the other regressors.

VIFδk is a multiplicative term in the calculation of σ̂2δk , which essentially quantifies how much inflation in the observed vari-

ance of δk is contributed by correlation among regressors (O'Brien, 2007). The lower bound of VIFδk is 1 when R2
δk
=0, and

there is no upper bound. A large VIF for a regressor indicates that the observed variance of the coefficient of the regressor is
inflated substantially, and the resulting confidence interval of the coefficient of the regressor is much wider than when there is
little correlation among regressors.

In the fourth analysis, we add one additional regressor, δk, in the uncontrolled regression:

zik = αk + βkdik + γkhik + δkcik ð3Þ

where cik is the observed synchronous score of student i corresponding to asynchronous exam k, and δk is the coefficient that
quantifies the effect of synchronous score. The slope δ is expressed in units of standard deviation of an asynchronous exam
per standard deviation of a synchronous exam, so a value of δ = 0.75 means, roughly speaking, that a student whose synchro-
nous score is 2 standard deviations higher than the average will obtain an asynchronous score that is 1.5 standard deviations
higher than the average. This process of adding potential confounding factors to the regression formula to see if the coefficient
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of interest changes substantially is a standard procedure to verify confounding factors (Kleinbaum, Kupper, & Morgenstern,
1982; Kleinbaum, Kupper, Muller, & Nizam, 1998). We refer to this regression as the controlled regression and report the
results in Section 4.4.

4 | RESULTS

4.1 | Students' exam time choices

We observed that more students chose to take asynchronous exams on later days of the exam period and at later hours of each
day (especially on the last day) even though they were allowed to choose when to take their asynchronous exams up to
2weeks before the exam period began. We plotted an example of the day and hour distributions for one exam in Figure 2. As
this figure shows, a large majority of the students took the exam on the last day. While the hour distribution of the first few
days are somewhat spread out, the hour distribution of the last day is biased toward later hours, especially the last hour.

We plotted the distribution of the student asynchronous exam records for each asynchronous exam with respect to scaled
day in Figure 3. As the figure suggests, students overwhelmingly choose to take asynchronous exams toward the end of the
exam period. The few segments that drop at the end correspond to final exams where students may have wanted to leave
campus early.

To have a better understanding of how students' ability relates to their exam time choices for asynchronous exams, we sep-
arated students into “High,” “Mid,” and “Low” equal-sized groups on a per-class basis based on their synchronous scores and
plotted the distribution of student exam records of all asynchronous exams aggregated for each group in Figure 4. We aggre-
gated different asynchronous exams by binning points on scaled day to intervals [0, 0.25), [0.25, 0.50), [0.50, 0.75), [0.75,
1.00), [1.00, 1.00], and averaged their y-axis values. We then plotted the averaged value on the left side of each interval. As
the results in the figure show, “High” students' exam time choice is the most evenly distributed, and the distributions are con-
centrated more at the end of the exam period as we move from “High” to “Low.”

We also plotted the distribution of student asynchronous exam records for each asynchronous exam on the last day with
respect to scaled hour in Figure 5. As this figure shows, there is a bias toward the later hours on the last day. These figures
indicate that the example in Figure 2 is indeed representative.

4.2 | Correlation analysis

We plotted a series of distributions of correlation coefficients and their significance in Figure 6. Specifically, we plotted the
number of significant (p< .05) correlations in light green and the number of nonsignificant ones in dark blue as a stacked bar.

The first subplot shows the distribution of correlation coefficients between the synchronous score and the standardized
score of asynchronous exams. Each correlation coefficient is calculated using the standardized score of one asynchronous
exam and the corresponding synchronous score. As the figure shows, all pairs are positively correlated, and the coefficients
center around 0.4–0.5, mean r = .432, 95% CI [0.401, 0.462]. Almost all of them are significant at the p< .05 level. As a ref-
erence, the distribution of correlation coefficients between the scores of asynchronous exams that belong to the same class and
same semester is plotted in the second subplot of Figure 6. As the subplot shows, all of the correlation coefficients are positive
and centered around 0.3–0.4, mean r = .330, 95% CI [0.313, 0.346]. Most of them are significant at the p< .05 level. We take
the result of this comparison as positive evidence that the correlations between synchronous scores and standardized scores of
asynchronous exams are reasonable.
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FIGURE 2 Example of exam record distributions during the exam period for one exam. Students choose to take exams on later days,
especially the last day, and in later hours of the last day [Color figure can be viewed at wileyonlinelibrary.com]
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The distribution of correlation coefficients between synchronous scores and scaled days of asynchronous exams is
plotted in the third subplot of Figure 6. As the subplot suggests, they are mostly negatively correlated at around −0.3 to
−0.2, mean r = − .215, 95% CI [−0.233,−0.198]. A few of the correlation coefficients are actually positive but relatively
close to 0. Most of the correlation coefficients are significant (p< .05) except those near 0. This result is consistent with our
hypothesis that weaker students choose to take asynchronous exams on later days of the exam period. For comparison, we
plotted the distribution of correlation coefficients between standardized asynchronous scores and scaled days of asynchro-
nous exams on the last subplot of Figure 6. Most correlation coefficients are significant (p< .05), centering around −.2 to
−.1, mean r = − .128, 95% CI [−0.149,−0.107], and a slightly higher number of correlation coefficients are positive com-
pared to the previous case. Overall, all the observations in the figure are consistent with our hypothesis and previous
observations.
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FIGURE 3 Distribution of student exam records over the exam
period for all asynchronous exams. Each series of connected line segments
represents the distribution for a single asynchronous exam. The horizontal
axis shows the scaled day, with 0 representing the first day of each exam
and 1 representing the last day. We scaled the vertical axis values so that
all line segments would overlap with the dashed line if student exam
records were uniformly distributed over the exam period [Color figure can
be viewed at wileyonlinelibrary.com]

0.00 0.25 0.50 0.75 1.00

Scaled day

0

1

2

3

M
ul

tip
lie

r
w

ith
re

sp
ec

t
to

ex
pe

ct
ed

pe
rc

en
ta

ge
un

de
r

un
if

or
m

di
st

ri
bu

tio
n High ability

Mid ability

Low ability
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students separately. Axes are the same as in Figure 3 [Color figure can
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FIGURE 5 Distribution of student exam records over the operation
hours of the last day for all of the asynchronous exams. Each series of
connected line segments represents the distribution for a single
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0 representing the hour of the first exam record on the last day of each
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FIGURE 6 Distribution of correlation coefficients between synchronous score (sync), standardized score of asynchronous exams (async), and
scaled day of asynchronous exams (day). Note that the third subplot involves synchronous scores correlated with the scaled day of the
corresponding asynchronous exams. We plotted the total number of correlation coefficients in each bin in dark blue and the number of significant
(p< .05) correlation coefficients in each bin in light green [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Joint forest plot that compares the slopes βk of standardized asynchronous score versus scaled day under uncontrolled (top) and
controlled (bottom) conditions. Each circle represents the slope of one asynchronous exam, and they are grouped by course and semester as shown
on the left. The area of each circle is proportional to the weight wk = 1/vk of the corresponding exam in the meta-analysis, and the horizontal error
bar is the 95% confidence interval for the slope. The diamond at the bottom of the upper part of the figure represents the aggregate population slope,
β = − 0.390, 95% CI [−0.453,−0.328], for all of the exams under the uncontrolled analysis, and the diamond at the bottom of the lower part of the
figure represents the aggregate population slope, β = − 0.115, 95% CI [−0.168,−0.063], for all of the exams under the controlled analysis. The
width of the diamonds specifies the 95% confidence intervals of the estimates. The two-tailed significance levels of the slopes away from zero are
shown on the right of the figure as a number of stars [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 | Uncontrolled regression

The maximum VIF for both βk and γk among all the asynchronous exams is 1.295. These VIFs are reasonably small, and thus,
multicollinearity is not a concern.

We visualize each asynchronous exam's βk and γk with its 95% confidence intervals on a pair of forest plots in the upper parts
of Figures 7 and 8, respectively. A forest plot is a standard meta-analysis visualization tool (Cooper, Hedges, & Valentine, 2009)
that shows effect sizes for many different studies together with their confidence intervals (horizontal bars) and an indicator of
study reliability (area of circles).

The two-tailed significance levels (p values) for the slopes being nonzero are shown on the right of the figures. For the
effect of scaled day (βk), none (0%) of the slopes are statistically significantly positive (p< .05); 6 (7%) of the slopes are non-
significantly positive (p> .05); 46 (57%) of the slopes are statistically significantly negative, and 29 (36%) are nonsignificantly
negative. For the effect of scaled hour (γk), 2 (2%) of them are significantly positive; 17 (21%) are nonsignificantly positive;
18 (22%) are significantly negative; and 44 (54%) are nonsignificantly negative. To obtain an aggregated measure of β and γ,
we adopted the standard meta-analysis techniques described in Cooper et al. (2009). Although there is no clear consensus in

FIGURE 8 Joint forest plot that compares the slopes γk of standardized asynchronous score versus scaled hour under uncontrolled (top) and
controlled (bottom) conditions. The aggregate population slope under the uncontrolled analysis is γ = − 0.181, 95% CI [−0.240,−0.121], while the
aggregate population slope under the controlled analysis is γ = 0.019, 95% CI [−0.033, 0.071]. See Figure 7 for a description of the figure format
[Color figure can be viewed at wileyonlinelibrary.com]
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the meta-analysis community on how to combine regression slopes in the general case (Cooper, 2016), previous work
(Becker & Wu, 2007; Cooper, 2016) suggests that, under the condition when both the dependent and independent variables
are measured similarly across studies, the regression slopes can be safely combined by treating them as a simple effect. This is
the approach that we adopted. Details about these techniques are included in Appendix B. One important assumption of these
is that the data are normally distributed. We plotted the normal probability plots of βk and γk for the uncontrolled regression at
the top of Figure 9. As the figure suggests, they are both approximately normally distributed. Using meta-analysis techniques
(see Appendix B for more details), we obtained aggregate β = − .390, 95% CI [−0.453,−0.328], which is significantly nega-
tive (p< .0001), and aggregate γ = − .181, 95% CI [−0.240,−0.121], which is also significantly negative (p< .0001). The
aggregates β and γ are plotted as diamonds at the bottom of the upper parts of Figures 7 and 8, respectively. We have also
computed the R2 for each asynchronous exam, and the average R2 for the uncontrolled regression is 0.035.

To explore the impact of filtering students who have dropped the course, we calculated the aggregates β and γ including
these students. In this case, β = − 0.397, 95% CI [−0.462,−0.332], and γ = − 0.193, 95% CI [−0.256,−0.130]. Both values
become slightly more negative than those calculated without students who have dropped the course. However, each point esti-
mate is still well within the respective original confidence interval.

4.4 | Controlled regression

The maximum VIFs for βk, γk, and δk are 1.366, 1.335, and 1.237, respectively. These VIFs are again reasonably small, and
thus, multicollinearity is not a concern. The distributions of βk and γk are shown in the lower part of Figures 7 and 8, respec-
tively, where each βk and γk is plotted with its 95% confidence interval.

We again show the two-tailed significance levels (p values) for the slopes being nonzero on the right of the figures. For the
effect of scaled day (βk), 5 (6%) of them are statistically significantly positive (p< .05); 17 (21%) are nonsignificantly positive
(p> .05); 13 (16%) are significantly negative; and 46 (57%) are nonsignificantly negative. For the effect of scaled hour (γk),
6 (7%) are significantly positive; 38 (47%) are nonsignificantly positive; 4 (5%) are significantly negative; and 33 (41%) are
nonsignificantly negative. We plotted the normal probability plots of βk, γk, and δk for the controlled regression at the bottom
of Figure 9. As the figure suggests, they are approximately normally distributed. The same methodology as in the uncontrolled

FIGURE 9 Normal probability plots for the slopes βk, γk, and δk from all exams under uncontrolled and controlled settings. These plots show
that the slopes are approximately normally distributed [Color figure can be viewed at wileyonlinelibrary.com]
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regression was used to calculate the aggregates β and γ, and we obtained β = − .115, 95% CI [−0.168,−0.063], which is sig-
nificantly negative (p< .0001), and γ = .019, 95% CI [−0.033, 0.071], which is nonsignificantly positive (p> .1). The aggre-
gates β and γ are plotted as diamonds at the bottom of the lower parts of Figures 7 and 8, respectively. We also computed the
R2 for each asynchronous exam, and the average R2 for the controlled regression is 0.217.

5 | DISCUSSION

The purpose of this paper was to explore the previously observed phenomenon where, when given a choice of when to take
an exam, many students choose to take it toward the end of the exam period and, on average, perform worse than students
who choose earlier times (Chen et al., 2017). Our hypothesis for the cause of this phenomenon is that weaker students tend to
put off the exam, while stronger students tend to take the exam over a more uniform distribution of times. That is, we hypothe-
size that weaker students procrastinate more.

To test our hypothesis, we investigated data from courses that have run both synchronous exams (all students take the
exam at the same time) and asynchronous exams (students can choose when to take the exam within a short time period, usu-
ally 3–5 days) in the same semester. The synchronous exams were typically midterms and finals, which were weighted more
heavily in the course grades than asynchronous exams. The synchronous exams typically occurred chronologically in the
middle or after the asynchronous exams. We found that students' choices of exam time negatively correlate with their scores
on synchronous exams, r = − .215, 95% CI [−0.233,−0.198], meaning that students with lower scores on synchronous
exams tend to choose to take asynchronous exams later. This result is consistent with the best estimates of the correlation
between measured procrastination and measured academic achievement of r = − 0.39, 95% CI [−0.65,−0.13] (Kim & Seo,
2015), suggesting that student ability may in fact be a mediating variable between exam time choice and exam performance.

By using students' scores on synchronous exams as a control (Equation (3)), we found that the magnitude of the decline
observed in asynchronous exam scores throughout the exam period reduces considerably. As Figures 7 and 8 show, when syn-
chronous score is added to the regression, both β and γ shift substantially to the right. Specifically, β moves from −0.390 to
−0.115, which corresponds to about a 70% reduction in its value while remaining significantly below zero; γ changes from
−0.181 to 0.019, which is a change away from significantly negative to nonsignificance. These drastic changes suggest that
the decline observed in asynchronous exam score over the exam period can be largely attributed to the confounding factor of
synchronous exam score. In other words, students' ability, as measured by synchronous exam scores, explains the majority of
the declining trend. However, the coefficient corresponding to the decline of student scores over time is still statistically signif-
icantly negative even when students' ability is taken into account, suggesting that there are other factors causing students'
scores to decline over time and that there are no countervailing effects (such as widespread collaborative cheating) large
enough to cause average scores to increase over time.

While our results suggest that students' performance in synchronous exams plays an important role in choosing exam times
in the asynchronous setting, our data do not reveal why weaker students choose these later time slots. One hypothesis is that
they choose later times because they give these students the most time for studying, although a longer study time does not nec-
essarily result in better performance (Kember, Jamieson, Pomfret, & Wong, 1995; Plant, Ericsson, Hill, & Asberg, 2005).
Another hypothesis is that they procrastinate and end up with an equal amount of study time as for a synchronous exam
because it is well known that procrastination negatively correlates with academic performance (Richardson, Abraham, &
Bond, 2012). Either way, our results suggest that interventions focused on directly preventing students from scheduling their
exams later will not necessarily improve students' performance as their choice of exam time is closely related to their perfor-
mance on synchronous exams.

Importantly, our study also provides two pieces of evidence supporting the use of asynchronous computerized exams as a
viable alternative for synchronous paper-and-pencil exams. The first is the positive correlations observed between asynchro-
nous exam scores and synchronous exam scores. The second is that the decline of scores over time is not fully neutralized
even when synchronous scores are controlled for, suggesting that widespread collaborative cheating is not present in the asyn-
chronous setting. These two observations support the hypothesis that asynchronous computerized exams with proper pro-
ctoring and randomization can achieve an integrity similar to synchronous paper-and-pencil exams.

Our study suggests that the particular setup of the CBTF and precautions taken for CBTF exams are sufficient for suc-
cessful asynchronous computerized exams. To summarize, the CBTF is a normal computer lab converted for testing purposes,
where its file system and network are restricted. The CBTF is proctored while exams are running. Students are not allowed to
take notes in or out of the CBTF. Exam questions are randomly selected and parameterized. We encourage the adoption of
similar strategies by institutions that wish to have their own asynchronous computerized environments.
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There are a few obvious benefits of asynchronous randomized computerized exams. The computerized format allows ques-
tions with more sophisticated formats to be automatically graded, thus allowing class sizes to scale and reducing grading time.
The randomized questions reduce exam development time in the long run as items built with randomization can be reused
from semester to semester. The asynchronous scheduling virtually eliminates the need for conflict exams and simplifies the
handling of exceptions such as student illness. These three benefits facilitate frequent testing for large classes, thus enabling
the use of the well-known testing effect at scale (Phelps, 2012; Roediger III & Karpicke, 2006) and potentially leading to
improved student-learning outcomes (Nip, Gunter, Herman, Morphew, & West, 2018).

6 | LIMITATIONS

As the study in this paper used existing data from real courses, it has a number of limitations. First, we did not have access to
demographic information corresponding to individual student records, so we were unable to test for demographic correlates
with student behavior or results. In future work, it will be important to explore whether specific subgroups of students exhibit
different outcomes in the asynchronous computerized exam system. It is easy to imagine that there could be multiple complex
and interacting effects, such as asynchronous exams benefiting nontraditional students with family or work obligations or
asynchronous exams disadvantaging nontraditional students without well-established study habits. If we had individual stu-
dent demographic information, we could examine this by repeating our analysis disaggregated by subgroup.

Second, it is unclear the extent to which our results can be generalized beyond the setting of engineering courses at a large
R1 university in the United States. The student body in this study is likely only representative of similarly situated universities
and of similar engineering, and perhaps STEM, courses. Compared to national numbers for the engineering student popula-
tion, the population in the university where the data were collected has slightly fewer females (19.5%/21.3%) and fewer White
(41.5%/62.3%), Black (1.8%/4.1%), and Hispanic (5.8%/11.1%) students but more American Asian (22.1%/14.6%) and foreign
(25.6%/3.8%) students (Yoder, 2017). It would be very interesting to compare data from other environments.

Third, our data were limited in the number of synchronous exam controls we had for each course. Most of the courses for
which we had data offered only a single synchronous exam during the semester. While we have no reason to believe that this
would cause a consistent bias in using the synchronous exam as an estimate of student ability in the course, it is likely that
this exam does not measure the exact same skills as the asynchronous exams. Thus, our analysis may underestimate the extent
to which the decline of student scores over the exam period is due to the correlation between student ability and exam time
selection. Access to other measures of student ability would offer more control that could improve our analysis.

Fourth, we did not have detailed information about the exams in each course. As a result, we were unable to investigate the
effect of different question types (e.g., multiple choice vs. writing code), different exam purposes (e.g., primarily low-stakes
formative feedback vs. high-stakes summative assessments), or the amount of variation in questions given to different stu-
dents. Future work with access to per-exam and per-question details could help to elucidate the extent to which these and
other factors alter the effects analyzed in this work.

7 | CONCLUSION

We examined 26,139 asynchronous exam records from 81 asynchronous exams and 5,534 exam records from 15 synchronous
exams, all gathered over four semesters from six engineering and computer science courses. We tested the hypothesis that the
observed score decline, where students' average performance drops over the exam period in asynchronous exams, can be attributed
to weaker students electing to take exams later in the exam period. We found that students' choices of exam time negatively corre-
late with their scores on synchronous exams, meaning that students with lower scores on synchronous exams tend to choose to
take asynchronous exams later. Furthermore, we found that students' performance on synchronous exams explains approximately
70% of the observed decline in student scores over the exam period, where the observed decline is characterized by β in the uncon-
trolled regression (Equation (1)). This observation indicates that the majority of the observed decline in student scores over the
exam period is due to students with different levels of ability choosing to schedule their exams earlier or later in the exam period.
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ENDNOTES

1 By stronger/weaker students, we mean students who are observed to do well/poorly in synchronous exams.
2 The exam period length varies across exams. It is generally 3–5 days and up to 8 days for final exams.
3 In exceptional circumstances such as long-term illness, students take an asynchronous exam outside the normal exam period.
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APPENDIX A: CHARACTERISTICS OF EXAM SCORE DISTRIBUTIONS

We will show that the exam score distributions of asynchronous exams do not differ much from that of synchronous
exams after the filtering. This is important as discrepancies between the two might indicate something unusual is going on
in asynchronous exams. We use skewness and kurtosis to describe the distributions in addition to the mean of the scores as
in the literature (Cook, 1959; Ho & Yu, 2015; Lord, 1955). The skewness is a measure of the asymmetry of a distribution
where negative skewness means a longer left tail and positive skewness means a longer right tail. The kurtosis is a measure
of “tailedness” of a distribution where larger kurtosis indicates there are more values at the tail, and normal distributions
have a kurtosis value of 3. The squared skewness plus one is a lower bound of kurtosis because knowing a distribution is
skewed already puts some constraints on the tailedness of the distribution. We plotted the overall distribution of kurtosis
versus skewness of asynchronous exams in the top left subplot of Figure A1. To give a concrete sense of what score distri-
butions lead to the different skewness/kurtosis, we plotted score distributions of three selected asynchronous exams
around the scatter plot.

We plotted the mean, skewness, and kurtosis of asynchronous exams and synchronous exams side by side in Figure A2 to
compare them. As the figure shows, there is no distinctive difference between the two types of exams, and there are two
noticeable trends in the distributions: (a) exams with mean above 50% tend to have negative skewness, and (b) exams with
near symmetric distributions tend to have negative excess kurtosis compared to normal distribution, which has kurtosis
3. These two trends for exams have been observed since the middle of the last century (Cook, 1959; Ho & Yu, 2015; Lord,
1955) and indicate that these exams have typical score distributions.

To help understand what kind of asynchronous exams are excluded, we plotted the exam score distributions of two
excluded asynchronous exams due to large kurtosis in Figure A3. The main feature of these excluded asynchronous exams is
the presence of exam scores that are far from the mean in terms of number of standard deviations.
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FIGURE A1 The subplot on the top left is the distribution of kurtosis versus skewness of all the asynchronous exams after the
filtering. Each data point in the scatter plot represents a single asynchronous exam. The dashed curve is the lower bound for kurtosis in
terms of skewness. The other three subplots are the exam score distributions of the highlighted asynchronous exams in the skewness–
kurtosis subplot [Color figure can be viewed at wileyonlinelibrary.com]
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APPENDIX B: META-ANALYSIS

Meta-analysis techniques essentially deal with cases where it is not desirable to directly average effect sizes to compute the
mean. Specifically, the task we are trying to solve is: Given a set of k observed effect sizes T1, …, Tk, each with their unknown
true effect sizes θ1, …, θk, find an estimate of θ that is the average of all the θis. As an example, consider the effect size to be
the length of manufactured rods, and the Tis to be k measurements of the length of k different rods. In the simplest case, we
assume that all rods have exactly the same length (θ1 = … = θk = θ), and we use a single ruler to measure their lengths so that
the variance σ2 of each measurement is the same. In this case, computing an estimate of θ and its variance is straightfor-
ward with

θ̂= T =
Pk

i=1Ti

k
ðB1Þ
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FIGURE A2 Summary statistics for both the asynchronous exams and the synchronous exams. Each data point represents one exam. The
dashed curves in the bottom plots are the lower bound for kurtosis in terms of skewness [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE A3 Examples of score distributions of excluded asynchronous exams whose kurtosis is larger than 10. These asynchronous exams
generally have scores that are far from the mean in terms of standard deviation [Color figure can be viewed at wileyonlinelibrary.com]
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and

v=
σ2

k
: ðB2Þ

Now consider the case when the k measurements are performed with different rulers that have different standard errors σ1,
…, σk. We can no longer directly average the Tis to obtain an estimate of θ because they are not equally valuable. In this case,
we weight each Ti with wi =1=σ2i , so low variance measurements have higher weights (Cooper et al., 2009). We then compute
the estimate of θ and its variance as

θ̂= T : =
Pk

i=1wiTiPk
i=1wi

ðB3Þ

and

v: =
1Pk
i=1wi

: ðB4Þ

This case is often referred to as a fixed-effect model characterized by

Ti = θ+ ei ðB5Þ

where Var eið Þ= σ2i is the variance of the ith effect size due to estimation error. The fixed-effect model assumes that ei
is normally distributed with mean 0 and variance σ2i (ei �N 0,σ2i

� �
), and the covariance is 0 between ei and ej for all i 6¼ j (Cov

(ei, ej) = 0 for i 6¼ j).
So far, we have assumed that all rods are identical in length, in which case the fixed-effect model is sufficient. But what if

the actual lengths θ1, …, θk are normally distributed around the θ that we want to estimate? In this case, we need to first deter-
mine if there is enough evidence to invalidate the hypothesis that they are created equal. We compute the following homoge-
neity test statistic for this purpose (Cooper et al., 2009):

Q=
Xk
i=1

Ti−T :

� �2
σ2i

" #
=
Xk
i=1

wi Ti−T :

� �2
: ðB6Þ

If Q exceeds the upper-tail critical value of chi-square at k− 1 degrees of freedom, the observed variance in effect sizes
is significantly greater than what we would expect by chance if all studies shared a common population effect size, and
therefore, we reject the null hypothesis (Cooper et al., 2009). Otherwise, there is not enough evidence to reject the null
hypothesis, and the fixed-effect model is the correct choice. In the case of rejection, we need to use a random-effect model,
characterized by

Ti = θ+ ui + ei ðB7Þ

where Var uið Þ= σ2θ is the variance of the effect size due to heterogeneity, and Var eið Þ= σ2i is the variance of the ith effect size
due to estimation error. The random-effect model assumes that ei �N 0,σ2i

� �
, ui �N 0,σ2θ

� �
, and Cov(ei, ej) = 0 for i 6¼ j, Cov

(ei, uj) = 0 for all i and j. In the case of our example, the existence of ui could be due to the fact that these rods are not created
equal. We need to take σ2θ into account while computing an estimate of θ; therefore, we need to estimate σ2θ. There are several
estimators for this purpose, including the Hedges estimator

σ̂2θ,H =
1

k−1

Xk
i=1

Ti−T
� �2− 1

k

Xk
i=1

σ2i ðB8Þ
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and the DerSimonian–Laird estimator

σ̂2θ,DSL =
Q− k−1ð ÞPk

i=1wi−
Pk

i=1w
2
iPk

i=1wi

ðB9Þ

where Q is as defined in Equation (B6). The specific conditions under which each estimator should be used are based on
Cooper et al. (2009)

σ̂2θ =

max 0, σ̂2θ,DSL
� �

if homogeneity test is not rejected

σ̂2θ,DSL if homogeneity test is rejected, σ̂2θ,H <0, σ̂2θ,DSL > 0
� �

or homogeneity test is rejected, σ̂2θ,H >0, σ̂2θ,DSL > 0,Q≤3 k−1ð Þ� �
σ̂2θ,H otherwise:

8>>>><
>>>>:

ðB10Þ

After the estimation of σ2θ, we compute weights using wi =1= σ2θ + σ2i
� �

and use the new wis in Equations (B3) and (B4).
So far, we have discussed the fixed-effect model and the random-effect model using the example of measuring rods, but

how does this relate to the analysis in the paper? In the paper, we assumed that there exists some value corresponding to θ that
describes how exam scores would behave on average with respect to time in asynchronous exams. As we do not know θ, we
need to estimate it from the data. We assumed that each asynchronous exam has some slope θk that is normally distributed
around θ but cannot be observed directly. Thus, we need to obtain estimates of the θks, which we do by first having a group of
students take the exam asynchronously and then performing ordinary least squares (OLS) regression of scores with respect to
time. From the OLS regression, we obtain estimates of the θks as Tks with standard error σk. The OLS regression can be seen
as a ruler because we used it to obtain Tk with its corresponding error σk. These data are what we need to estimate θ.
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