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Abstract. We introduce a general family of Weighted Flow Algorithms for
simulating particle coagulation, generate a method to optimally tune these

methods, and prove their consistency and convergence under general assump-

tions. These methods are especially effective when the size distribution of the
particle population spans many orders of magnitude, or in cases where the

concentration of those particles that significantly drive the population evolu-

tion is small relative to the background density. We also present a family of
simulations demonstrating the efficacy of the method.

1. Weighted methods for coagulation equations. Predicting the evolution of
particle size distributions that are multi-dimensional in composition space and un-
dergo coagulation is a challenge in many areas in science and engineering. Examples
include the modeling of aerosol particles in the Earth’s atmosphere [27, 33, 38, 46],
and of aerosol processes in industrial applications [10].

Recently, particle-resolved models have been introduced to tackle this problem
[9, 32, 39]. These stochastic models fully resolve the multi-dimensional particle
distribution as they simulate a representative group of particles distributed in com-
position space. Coagulation, condensation and evaporation, and other important
processes can then be treated on an individual particle level. The first rigorous ap-
plication of such a Monte Carlo approach was suggested by Gillespie, who developed
the exact Stochastic Simulation Algorithm [16, 17, 18, 19] to treat the stochastic
collision-coalescence process in clouds.

A straight-forward implementation of these methods assumes that each compu-
tational particle represents a physical particle. However, this naive approach can
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quickly become computationally infeasible, the reason being the diversity of the un-
derlying particle population—either with respect to size or to composition—and the
relative abundance of the sub-populations. There are two distinct conceptual sce-
narios in which these problems arise, which we term the “size multiscaling problem”
and the “compositional multiscaling problem”.

For the “size multiscaling problem”, consider the example of initially monodis-
perse aerosol particles of sub-micrometer size coagulating due to Brownian diffusion
in the atmosphere [26, Chapter 16.4.2]. After some time of coagulation, the range
of particle sizes present in the population can span many orders of magnitude, from
tens of nanometers to several microns in diameter. Resolving the full particle size
range is important since the small particles dominate the particle number concen-
tration whereas the large particles dominate the particle mass concentration, and
one typically aims to keep track of both. Moreover, the most likely coagulation
events involve interactions of small and large particles, since the interactions are
more likely to take place between particles with different diffusion properties [40,
Chapter 13.3.1.3]. However, the number concentrations of particles in the sub-
micron size range are typically several orders of magnitude larger than the particles
in the super-micron size range [40, Chapter 8.2]. Therefore, to resolve the entire size
spectrum accurately, the total number of computational particles in the simulation
must be very large, otherwise the population of large particles will be under-resolved
and the accuracy of the simulation significantly compromised. We will address this
very problem in Section 6, where we simulate a cloud droplet population undergo-
ing collision-coalescence, producing very few, but for the dynamics of the system
crucially important, large drizzle drops [29].

A conceptually different problem is the “compositional multiscaling problem”;
this arises when a certain type of particle is of special interest, and particles of
this type are much rarer compared to the rest of the particles in the given size
range. For example, the ability of an atmospheric aerosol population to absorb
solar radiation is directly related to the aerosol impact on climate and hence is an
important quantity [40, Chapter 24.2]. One of the few absorbing aerosol types is
soot, a by-product of the incomplete combustion of carbon containing material [36].
Thus, to accurately predict how much solar radiation the aerosol population absorbs,
the soot sub-population must be adequately captured. The size distribution of soot
aerosol peaks in the accumulation mode range [22], a size range where many other
particle types are present that do not contain soot [21, 37]. If the conditions are
such that the number concentration of the soot sub-population is small compared
to the non-soot particles, either a large number of computational particles needs to
be expended to resolve the soot particles or the prediction of absorptivity will be
inaccurate.

What this has in common with the previous example, however, is that there is
an important sub-population of particles that have concentrations that are several
orders of magnitude lower than other sub-populations. A naive representation of
the particle population either leads to under-resolving the small but important sub-
population, or to requiring very large numbers of computational particles in the
simulation. One strategy to circumvent these difficulties is to use the concept of
“weighted” computational particles, where a single computational particle corre-
sponds to some number of real particles. This idea has been pursued by several
groups in the past; the methods can be broadly divided into two categories, either
the weightings are attached to the particles or they are functions of the particle
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constituents. Variants of both particle-attached [35, 30, 47, 24, 25, 48, 49] and
particle-function weightings [1, 6, 11, 12, 13, 14, 28, 41, 44] have been widely stud-
ied.

Building on this literature, and particularly on the work of Kolodko and Sabelfeld
[28], we presented the development and application of the Weighted Flow Algo-
rithms (WFA) for particle-resolved methods in DeVille et al. [7], as a generalized
way of weighting computational particles to improve computational efficiency. Our
analysis was able to demonstrate general conditions for consistency and optimality
of this class of weighted methods. Applying this to the simulation of atmospheric
aerosol particles, we used weighting functions that were power laws in the total par-
ticle mass, and showed that this can greatly increase the accuracy and performance
of the simulation. One particular feature of these simulations was their tunability
that allowed them to be optimized for different observables, e.g., one could choose
parameters to make a simulation accurate in measuring particle number, and then
change these parameters to have another simulation optimize for particle mass.
Thus we have a family of simulations of such systems, each of which optimizes dif-
ferent observables to a different degree. To obtain a full simulation that takes into
account several different observables (e.g., if we would like to track both particle
number and mass well) it was necessary to perform several independent simulations,
each optimized for their particular observable, and then combine them a posteri-
ori. While this was done in DeVille et al. [7], a better method would be one that
combines these different weightings during the running of the simulation.

We can now describe the content of this paper as follows: we have developed a
method that solves both the size and compositional multiscaling problems at once,
and also allows for a run-time mixing of multiple schemes. To do so, we have
developed a particle method that allows for several different sub-populations that
can interact; these sub-populations can correspond to populations at different length
scales (speaking to the size multiscaling problem) or of different types (speaking to
the compositional multiscaling problem). Each of these sub-populations can be
weighted differently as the problem requires.

We also prove convergence of such methods under very weak assumptions. A
more precise statement is included in the theorems below, but in essence we show
that there are a family of “consistency conditions” that, when satisfied, will guaran-
tee that a scheme developed with this method will converge to the correct solution
in the limit of large numbers of particles. These conditions are easy to verify for
a particular scheme. Moreover, we show how to develop an optimal method in the
set of consistent methods.

Finally, we present a series of numerical simulations demonstrating the practical
efficacy of the multiscaling methods developed in this paper.

2. Problem formulation and summary of results. For aerosol dynamics simu-
lations, one of the most expensive portions of the calculations can be the parts that
deal with coagulation of particles [15, 16]. The equations that govern coagulation
are the Smoluchowski equations.

2.1. Equations of interest. The continuous Smoluchowski equations are:

∂n(µ)

∂t
=

1

2

∫
[0,µ]

K(ν,µ− ν)n(ν)n(µ− ν) dν −
∫

[0,∞)

K(ν,µ)n(ν)n(µ) dν,

(2.1)
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where K(µ,ν) is the coagulation rate between particles of masses µ,ν ∈ Rn and
we write [0,µ] to denote the set of points that are elementwise between 0 and µ.

Now choose any partition of [0,∞), which we denote {In}∞n=0. Then if we define

Kij :=
1

|Ii||Ij |

∫
Ii×Ij

K(µ,ν) dµ dν,

x̂i(t) :=

∫
Ii

n(µ) dµ,

it is not hard to see that (2.1) is asymptotically equivalent to

d

dt
x̂i(t) =

i−1∑
j=1

1

2
Kj,i−j x̂j(t)x̂i−j(t)−

∞∑
j=1

Kij x̂j(t)x̂i(t), (2.2)

where the asymptotic correction goes to zero as maxj |Ij | → 0. It could be debated
whether we should consider (2.1) or (2.2) as the fundamental object to consider.
In this paper, we consider (2.2) as the fundamental object and consider how to
simulate it stochastically.

2.2. Summary of results of the paper. We first develop a method of particle
simulation for the Smoulchowski equation with the added feature that we are allowed
to consider multiple, and possibly interacting, particle sub-populations. It is not
surprising that one must choose a method so that the mean of the stochastic method
corresponds to the evolution we are trying to approximate; however, we show below
in Theorem 1 that this is also sufficient to obtain the correct mean for trajectories.

We then develop a family of consistency conditions in Section 4 that give the
correct mean during the simulation. It turns out that, due to the many degrees of
freedom in the parameters of the stochastic simulation, there are many choices that
give consistency, so we also develop the conditions that give the optimal consistent
method. Finally, we state and prove a family of theorems that guarantee that these
methods are accurate in the limit of large population size.

3. Formal overview of algorithm. See Table 1 for a summary of the notation
used throughout the paper.

3.1. Computational coagulation. We want to represent computational particles
by both a mass and a tag representing their “class”. We denote M as the set of
classes and assume that masses are integer-valued. Thus the state of the system is
the function

Q : M× N1 × R+ → N0, (3.1)

Qai (t) = “the number of computational particles of class a and mass i at time t.”
(3.2)

In this context, we use the word class very broadly: all it means is that we have
made an a priori division of the particles. As can be seen from (3.1), each particle
belongs to exactly one class, so the class can be regarded as an arbitrary additional
particle property. The class is not a function of the other particle properties. The
criterion for assigning particles to classes will depend on the application. As can be
seen in Section 6, examples include: classes delineated by mass, with one class being
large particles and the other small particles; classes delineated by composition, with
one class containing the more common chemical constituents and the other class
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Variables Meaning Range
a, b, c, d physical particle class M = {1, 2, 3, . . . ,M}
α, β, γ event outcomes {0, 1}
e basis vector M× N1 → Z
i, j, k physical particle size N1 = {1, 2, 3, . . .}
K coagulation kernel [0,∞)
λ event rate [0,∞)
N physical number concentration [0,∞)
Np total number of computational particles N0 = {0, 1, 2, . . .}
p probability [0, 1]
q,Q number of computational particles N0 = {0, 1, 2, . . .}
ρ event rate [0,∞)
T selection rate function [0,∞)
V computational volume (0,∞)
w weighting function (0,∞)
x,X physical particle concentration [0,∞)
y, Y computational particle concentration [0,∞)
ζ event jump M× N1 → Z

Table 1. Notation and variable ranges.

containing the rare chemical constituents for examples of classes. It may even be
that otherwise identical particles are divided between two classes.

We want to consider a splitting method to simulate (2.2) where we use a two-step
process to determine which event to perform next. The fundamental computation
is the propensity of the pair of particles (a, i) and (b, j) to coagulate and become
the particle (c, i+ j). The two steps are:

1. Choose a triplet of particles ((a, i), (b, j), (c, i+j)) with some probability, where
(a, i) and (b, j) are represented by some positive number of computational
particles, i.e., qai (t) > 0, qbj(t) > 0. The rate at which we choose this triplet

will be denoted T abcij .
2. Next, we decide what to do with this triplet; we can either remove an (a, i)

particle or not, remove a (b, j) particle or not, and create a (c, i+j) particle or
not. We thus define the eight probabilities pabcij (α, β, γ), where α, β, γ ∈ {0, 1}
denote whether the particle of type a, b, or c exists after the coagulation.

We require, for all a, b, c ∈M and i, j ∈ N1, that∑
α,β,γ∈{0,1}

pabcij (α, β, γ) = 1. (3.3)

In the standard (what we might call “non-split”) particle method, we would only
allow α = β = 0 and γ = 1, meaning that when the triplet is chosen, we always
destroy the first two particles and create the third. We could then interpret T abcij

to be the rate of coagulating (a, i) and (b, j) and obtaining (c, i + j). In this split
method, we can see that the propensity to create the particle of type (c, i+j) in this
coagulation is now given by the product T abcij

∑
α,β∈{0,1} p

abc
ij (α, β, 1), and similarly

for the destruction of the other two particles.
One note here about “split” and “non-split” methods. The reader has no doubt

noticed that we are allowing for transitions that, e.g., violate mass conservation,
because we can create the (c, i+ j) particle without destroying the (a, i) and (b, j)
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particles. If we were interested in simulating a finite population of particles, this
would be a problem. However, this algorithm is intended to generate a finite particle
estimator of an infinite particle limit, namely the Smoluchowski equations (2.1).
This gives additional design flexibility in choosing the particle dynamics, and as
we show in Theorems 1 and 2, all of the choices we make below are asymptotically
correct. In fact, as we show in several examples in Section 6, using “fictitious” jump
laws can actually approximate the infinite particle limit better than those choices
which are “realistic”.

Thinking of these transitions as taking place in the context of a continuous time
Markov chain (CTMC), we would like to define the rates of the CTMC as

λabcij (Q;α, β, γ) := T abcij · pabcij (α, β, γ) ·Qai (t)
(
Qbj(t)− δa=b,i=j

)
, (3.4)

and the event jumps by

ζabcij (α, β, γ) := (α− 1)eai + (β − 1)ebj + γeci+j , (3.5)

where eai is the unit vector corresponding to one particle of size i and class a.
More concretely, this means that if we choose a family of independent Poisson

processes of rate one, Nabc
ijαβγ(t), then we have

Qai (t) = Qai (0) +
∑

Nabc
ijαβγ

(∫ t

0

λabcij (Qai (s);α, β, γ) ds

)
ζabcij (α, β, γ). (3.6)

Notice that if α = 0 (resp. β = 0), we will remove one (a, i) (resp. (b, j)) particle,
and if α = 1 (resp. β = 1), we will do nothing to the (a, i) (resp. (b, j)) population.
Conversely, if γ = 1 we will create a particle of type (c, i+ j) and if γ = 0 we will do
nothing to the (c, i+j) population. As we said above, the choice (α, β, γ) = (0, 0, 1)
corresponds to the “direct” coagulation method where we always remove the two
smaller particles and always create the larger one. Every other possibility exists in
the split scheme, even (in theory) (α, β, γ) = (1, 1, 0), which would have no effect on
Q (of course, we would like this to happen infrequently during an actual simulation,
and this is a question dealt with in Section 4.3 below).

Of course, once we specify T abcij and pabcij (α, β, γ), this specifies a particular nu-
merical scheme. The question remains as to whether this corresponds in any sense
to an approximation for (2.2). Let us define a computational volume V , and then
define the computational particle concentration Y ai (t), the physical particle concen-
tration Xa

i (t), and the binned Smoluchowski variable Xi(t) as follows:

Y ai (t) :=
1

V
Qai (t) (3.7)

Xa
i (t) := Y ai (t)wai (3.8)

Xi(t) :=
∑
a∈M

Xa
i (t) (3.9)

where wai is a “weighting function” which can be interpreted as follows: each com-
putational particle of class a and size i corresponds to wai physical particles of class
a and size i. The variable Xi(t) corresponds to the concentration of all physical
particles of any class with mass i, and the fundamental constraint is that Xi(t)
should somehow simulate the dynamical system (2.2). Of course, Xi(t) is a random
quantity, and x̂i(t) is deterministic, so some care is needed here.

We can deduce from (3.6) that

E[Q(t+ h)−Q(t) | Q(t)] = h
∑

λabcij (Q;α, β, γ)ζabcij (α, β, γ) + o(h), (3.10)



CONVERGENCE OF A GENERALIZED WEIGHTED FLOW ALGORITHM 75

or

E[Y (t+ h)− Y (t) | Y (t)] = h
∑

V −1λabcij (V Y ;α, β, γ)ζabcij (α, β, γ) + o(h), (3.11)

which is just a time-discretization for a continuous-time Markov chain [5, 8, 34].
If it turns out that the quantity V −1λ(V Y ; . . . ) is well-defined, and the variance
of Y (t + h) − Y (t) goes to zero fast enough as V → ∞, then (3.11) limits to a
deterministic ordinary differential equation (ODE) for y = E[Y ], and one can ask
whether or not this ODE corresponds to (2.2).

In fact, we show below in Theorem 1 that if we define

ρabcij (Y ;α, β, γ) := lim
V→∞

1

V
λabcij (V Y ;α, β, γ)

= V T abcij pabcij (α, β, γ)Y ai (t)
(
Y bj (t)− V −1δi=j,a=b

)
,

(3.12)

and we scale T abcij so that this quantity is well-defined in the limit V →∞, then in
this limit, Y (t) is close to the deterministic quantity y(t), where

d

dt
y(t) =

∑
a,b,c∈M
i,j∈N1

α,β,γ∈{0,1}

ρabcij (y;α, β, γ)ζabcij (α, β, γ). (3.13)

(We specify precisely what we mean by “close” below in Theorem 1.) We want this
system to correspond to that given in (2.2), so if we define the ensemble averages

ŷai (t) := E[Y ai (t)], x̂ai (t) := E[Xa
i (t)], x̂i(t) := E[Xi(t)], (3.14)

then (2.2) corresponds to a deterministic ODE for x̂i(t), and then, ultimately, ŷai (t).
We want these equations to match, and thus we define:

Definition 1 (Consistency). Specifying T abcij and pabcij (α, β, γ) determines (3.13).
Similarly, (2.2) gives an ODE for x̂i(t) and thus gives evolution equations for ŷai (t)
(q.v. (4.3) below). If these choices give us the same ODE, we say they are consistent.

It turns out that to check whether or not a choice of method is consistent a priori
is a rather complicated computation. We perform this computation in the general
case in Section 4 below, but show that a simplifying Ansatz allows us to develop a
much simpler set of conditions, given in (4.13).

One of the two main theoretical results of this paper is the following theorem.

Theorem 1. Assume that Kij has compact support, i.e., there exists an N > 0

such that Kij = 0 whenever i > N or j > N . Assume that T̃ abcij and p̃abcij (α, β, γ) are
chosen to satisfy the consistency conditions defined in (4.13). Let Q be a solution to
the CTMC whose rates and transitions are given by (3.4, 3.12) and define Y = Q/V
and X as in (3.9). Let x̂ solve (2.2). Then X converges to x̂ in the following sense:
for any T > 0, h > 0, there exist C1, C2 ∈ (0,∞) such that

P

(
sup
t∈[0,T ]

|X(t)− x̂(t)| > h

)
≤ C1 exp(−C2V ).

Remark 1. The constraint that Kij have compact support seems restrictive, es-
pecially since many realistic kernels are typically formally written as polynomials,
examples including the linear or multiplicative kernels, Kij = i+ j,Kij = ij. How-
ever, this restriction is not significant in practice, as we prove below. Since there is
a conserved quantity (the total mass) in this system, it is not possible to ever have
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a particle larger than this mass in (2.2). Any stochastic simulation of this equation
that gives a good approximation is unlikely to ever generate such a particle, and if
it does not then truncation makes no difference. (We make this statement precise
in Theorem 2 below.)

4. Computations of consistency and optimality. In this section, we first com-
pute explicitly the consistency conditions on T abcij and pabcij (α, β, γ), i.e., the con-
ditions on these functions which make (3.13) as a function of y evolve the same
as (2.2) as a function of x̂.

4.1. Consistency. Combining the definitions from (3.14, 3.7, 3.8, 3.9), we obtain

x̂i(t) =
∑
a∈M

ŷai (t)wai . (4.1)

Substituting this into (2.2), we obtain

d

dt

(∑
d∈M

ŷdk(t)wdk

)
=

k−1∑
i=1

1

2
Ki,k−i

(∑
a∈M

ŷai (t)wai

)(∑
b∈M

ŷbk−i(t)w
b
k−i

)

−
∞∑
i=1

Kki

(∑
a∈M

ŷai (t)wai

)(∑
d∈M

ŷdk(t)wdk

)
, (4.2)

or ∑
d∈M

wdk
d

dt
ŷdk(t) =

∑
a,b∈M

k−1∑
i=1

1

2
Ki,k−iŷ

a
i (t)ŷbk−i(t)w

a
i w

b
k−i

−
∑
a,d∈M

∞∑
i=1

Kkiŷ
a
i (t)ŷdk(t)wai w

d
k. (4.3)

We now expand (3.13) using (3.1, 3.4, 3.5, 3.12).

d

dt
y(t) =

∑
T abcij pabcij (α, β, γ)yai (t)ybj(t)

(
(1− α)eai + (1− β)ebj + γeci+j

)
(4.4)

= −
∑

a,b,c∈M
i,j∈N1

β,γ∈{0,1}

T abcij pabcij (0, β, γ)yai (t)ybj(t)e
a
i

−
∑

a,b,c∈M
i,j∈N1

α,γ∈{0,1}

T abcij pabcij (α, 0, γ)yai (t)ybj(t)e
b
j

+
∑

a,b,c∈M
i,j∈N1

α,β∈{0,1}

T abcij pabcij (α, β, 1)yai (t)ybj(t)e
c
i+j . (4.5)

Writing out the specific coordinates of y(t), we have

d

dt
ydk(t) = −

∑
a,b,c∈M
i,j∈N1

β,γ∈{0,1}

T abcij pabcij (0, β, γ)yai (t)ybj(t)δa=d,k=i
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−
∑

a,b,c∈M
i,j∈N1

α,γ∈{0,1}

T abcij pabcij (α, 0, γ)yai (t)ybj(t)δb=d,k=j

+
∑

a,b,c∈M
i,j∈N1

α,β∈{0,1}

T abcij pabcij (α, β, 1)yai (t)ybj(t)δc=d,k=i+j (4.6)

= −
∑
b,c∈M
j∈N1

β,γ∈{0,1}

T dbckj p
dbc
kj (0, β, γ)ydk(t)ybj(t)

−
∑
a,c∈M
i∈N1

α,γ∈{0,1}

T adcik padcik (α, 0, γ)yai (t)ydk(t)

+
∑
a,b∈M

i=1,...,k−1
α,β∈{0,1}

T abdi,k−ip
abd
i,k−i(α, β, 1)yai (t)ybk−i(t). (4.7)

Making the change of dummy variables in the first sum of b 7→ a, j 7→ i, β 7→ α, and
switching these same variables in the third sum, we obtain

d

dt
ydk(t) = −

∑
a,c∈M
i∈N1

α,γ∈{0,1}

T dacki pdacki (0, α, γ)ydk(t)yai (t)

−
∑
a,c∈M
i∈N1

α,γ∈{0,1}

T adcik padcik (α, 0, γ)yai (t)ydk(t)

+
1

2

∑
a,b∈M

i=1,...,k−1
α,β∈{0,1}

T abdi,k−ip
abd
i,k−i(α, β, 1)yai (t)ybk−i(t)

+
1

2

∑
a,b∈M

i=1,...,k−1
α,β∈{0,1}

T badi,k−ip
bad
i,k−i(β, α, 1)ybi (t)y

a
k−i(t). (4.8)

If we symmetrize

T̃ abcij := T abcij + T bacji , (4.9)

p̃abcij (α, β, γ) :=
T abcij pabcij (α, β, γ) + T bacij pbacij (β, α, γ)

T̃ abcij

, (4.10)

then we can combine two terms and obtain

d

dt
ydk(t) = −

∑
a,c∈M
i∈N1

α,γ∈{0,1}

T̃ adcik p̃adcik (α, 0, γ)ydk(t)yai (t)
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+
1

2

∑
a,b∈M

i=1,...,k−1
α,β∈{0,1}

T̃ abdi,k−ip̃
abd
i,k−i(α, β, 1)yai (t)ybk−i(t). (4.11)

We want to compare (4.11) and (4.3). Summing (4.11) over d with the appro-
priate weighting gives∑

d∈M
wdk

d

dt
ydk(t) = −

∑
a,c,d∈M
i∈N1

α,γ∈{0,1}

T̃ adcik p̃adcik (α, 0, γ)wdky
d
k(t)yai (t)

+
1

2

∑
a,b,d∈M

i=1,...,k−1
α,β∈{0,1}

T̃ abdi,k−ip̃
abd
i,k−i(α, β, 1)wdky

a
i (t)ybk−i(t). (4.12)

Thus for consistency we must choose∑
d∈M,α,β∈{0,1}

T̃ abdik−ip̃
abd
ik−i(α, β, 1)wdk = Ki,k−iw

a
i w

b
k−i, (4.13a)

∑
c∈M,α,γ∈{0,1}

T̃ adcik p̃adcik (α, 0, γ)wdk = Kkiw
a
i w

d
k. (4.13b)

We call these the consistency conditions on T, p as per Definition 1. These are
still quite complicated as written, so we will make a simplifying Ansatz in the next
section.

4.2. A simplifying Ansatz. We will now make a simplifying assumption on the
probability distribution. As stated above, the probability distribution pabcij (α, β, γ)
has no constraints other than (3.3).

However, we now assume that the creation or destruction of each of the three
particles involved in a coagulation are chosen independently, i.e., in a coagulation
involving (a, i) and (b, j) coagulating into (c, i + j), we choose the three events
“whether (a, i) is destroyed”, “whether (b, j) is destroyed”, and “whether (c, i+ j)
is created” independently.

More formally, we define numbers

0 ≤ pabcdes,ij ≤ 1, 0 ≤ pabccre,ij ≤ 1 (4.14)

and

pabcdes,ij(α) :=

{
pabcdes,ij if α = 0,

1− pabcdes,ij if α = 1,
(4.15)

pabccre,ij(γ) :=

{
pabccre,ij if γ = 1,

1− pabccre,ij if γ = 0,
(4.16)

and we assume that

p̃abcij (α, β, γ) = pabcdes,ij(α)pbacdes,ji(β)pabccre,ij(γ). (4.17)

We see here that if we interpret pabcdes,ij as the probability of destroying particle

(α, i) during a coagulation event, and pabccre,ij as the probability of creating particle
(c, i+ j) during this event, then (4.17) is simply asserting that these creations and
destructions are done independently.
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Observe that, by definition,∑
α∈{0,1}

pabcdes,ij(α) =
∑

γ∈{0,1}
pabccre,ij(γ) = 1 for all a, b, c, i, j. (4.18)

Writing out (4.13) under this Ansatz, we obtain

Ki,k−iw
a
i w

b
k−i =

∑
c∈M

T̃ abci,k−ip
abc
cre,i,k−iw

c
k,

Kkiw
a
i =

∑
c∈M

T̃ abcik pbacdes,ki.
(4.19)

It is more convenient to write these formulas if we switch (a, i) and (b, j) in the
second equation and relabel j − i 7→ j in the first equation, obtaining:

Kijw
a
i w

b
j =

∑
c∈M

T̃ abcij pabccre,ijw
c
i+j , (4.20)

Kijw
b
j =

∑
c∈M

T̃ abcij pabcdes,ij . (4.21)

Remark 1. In the case of just one type, where M = {1}, there is no sum on the
RHS. This reduces to

Kijwiwj = T̃ijpcre,ijwi+j , (4.22)

Kijwj = T̃ijpdes,ij , (4.23)

which is consistent with our earlier results in [7] (note the argument order for pdeath

is reversed here).

4.3. Optimality. Even under the independence Ansatz, there are still many choices
we can make for T, p. In this section we discuss optimality, in the sense of having
the least number of events generated by the method.

Since they are probabilities, we require

0 ≤ pabccre,ij ≤ 1, 0 ≤ pabcdes,ij ≤ 1, (4.24)

and this implies that we can ensure the consistency conditions if and only if∑
c∈M

wci+j T̃
abc
ij ≥ Kijw

a
i w

b
j , (4.25)∑

c∈M
T̃ abcij ≥ Kijw

b
j , (4.26)∑

c∈M
T̃ abcij ≥ Kijw

a
i , (4.27)

where we use symmetry of T̃ .
For optimality we want to solve

min
T̄

∑
c∈M

T̃ abcij (4.28)

subject to the above constraints and

T̃ abcij ≥ 0. (4.29)
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In general there will be many optimal solutions. One solution that is always optimal
is to find

c∗i+j = argmax
c∈M

wci+j (4.30)

and then set

T̃ abcij =

Kij max

(
wa

i w
b
j

wc
i+j

, wai , w
b
j

)
if c = c∗i+j ,

0 otherwise.
(4.31)

This expression is consistent for any choice of c∗i+j . It is also optimal under the

additional constraint that T̃ abcij = 0 for c 6= c∗i+j .
One nice practical possibility would be to require that c∗ is either a or b (as these

are the two groups involved in the coagulation event already), and to pick c∗ to be
the group with the lowest weight, thereby minimizing the statistical error.

Note that we can compute the creation and destruction probabilities by using

the fact that T̃ abcij = 0 for c 6= c∗, so

Kijw
a
i w

b
j = wc

∗

i+j T̃
abc∗

ij pabc
∗

cre,ij , (4.32)

Kijw
b
j = T̃ abc

∗

ij pabc
∗

des,ij , (4.33)

giving

pabc
∗

cre,ij =
Kijw

a
i w

b
j

wc
∗
i+j T̃

abc∗
ij

, (4.34)

pabc
∗

des,ij =
Kijw

b
j

T̃ abc
∗

ij

. (4.35)

If we define

Mabc
ij := min

(
wai , w

b
j , w

c
i+j

)
(4.36)

then we see that T̃ can be written

T̃ abcij = δc,c∗
Kijw

a
i w

b
j

Mabc
ij

:=


Kijw

a
i w

b
j

Mabc
ij

if c = c∗,

0 otherwise.
(4.37)

and

pabc
∗

cre,ij =
Mabc∗

ij

wc
∗
i+j

, pabc
∗

des,ij =
Mabc∗

ij

wai
. (4.38)

Note again that the argument order convention for pdes is reversed from [7]. These
optimal probabilities will be used in all numerical experiments in Section 6.

5. Theorem and proof. We will prove Theorem 1, which we restate here for
completeness.

Theorem 1. Assume that Kij has compact support, i.e., there exists an N > 0

such that Kij = 0 for i > N or j > N . Assume that T̃ abcij and p̃abcij (α, β, γ) are
chosen to satisfy the consistency conditions defined in (4.13). Let Q be a solution to
the CTMC whose rates and transitions are given by (3.4, 3.12) and define Y = Q/V
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and X as in (3.9). Let x̂ solve (2.2). Then X converges to x̂ in the following sense:
for any T > 0, h > 0, there exist C1, C2 ∈ (0,∞) such that

P

(
sup
t∈[0,T ]

|X(t)− x̂(t)| > h

)
≤ C1 exp(−C2V ).

Remark 2. Before we prove the theorem we give some motivation for the con-
vergence in terms of generators. The generator of the stochastic process [34, 42]
is

Lf(q) =
∑

a,b,c∈M
i,j∈N1

α,β,γ∈{0,1}

λabcij (q;α, β, γ)
[
f(q + ζabcij (α, β, γ))− f(q)

]
. (5.1)

We will need to write this triple sum in many places below; whenever we write a
sum without limits in the remainder of this section, we mean the triple sum which
appears in (5.1). If we define

ρabcij (y;α, β, γ) := lim
V→∞

1

V
λabcij (V y;α, β, γ) (5.2)

= V T abcij pabcij (α, β, γ)yai (t)
(
ybj(t)− V −1δi=j,a=b

)
, (5.3)

and f̃(y) := f(V y), then we have a new operator

LV f̃(y) =
∑

V ρabcij (y;α, β, γ)
[
f̃
(
q + V −1ζabcij (α, β, γ)

)
− f̃(q)

]
. (5.4)

Computing the first nonzero term in the Taylor series expansion on the right-hand
side gives

LV f̃(y) ≈
∑

ρabcij (y;α, β, γ)∇f̃(q) · ζabcij (α, β, γ) (5.5)

= ∇f̃(q) ·
∑

ρabcij (y;α, β, γ)ζabcij (α, β, γ). (5.6)

This is the Liouville equation for the ODE

d

dt
y(t) =

∑
a,b,c∈M
i,j∈N1

α,β,γ∈{0,1}

ρabcij (y;α, β, γ)ζabcij (α, β, γ). (5.7)

Proof of Theorem 1. The main result that we will use in the proof is Kurtz’s
theorem [31], [42, Theorem 5.3]. In fact, the statement of Theorem 1 is precisely
the same as [42, Theorem 5.3] with the added assumption that the rescaled rates
ρabcij (y;α, β, γ) be Lipschitz and uniformly bounded as functions of yai (t), and that
the vectors yai (t) live in a finite-dimensional space.

The functions ρabcij (y;α, β, γ) are locally Lipschitz, being polynomial. Moreover,
under the assumption of compact support for Kij , they become globally Lipschitz.
Similarly, since Kij = 0 if i, j ≥ N , we can also consider the finite-dimensional
truncation of (2.2) without loss of generality, and note that this makes all of the
sets of indices that we sum over above finite.

For the theorem to be true, we need a kernel of compact support. Assume now
that we have a coagulation kernel Kij that has unbounded support. For any N > 0,
we can consider the truncation of this kernel in the obvious way, by choosing

K
(N)
ij :=

{
Kij if i, j < N,

0 otherwise.
(5.8)
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The obvious question to ask is, if we choose two different truncations, K
(N)
ij and

K
(N ′)
ij , what is the probability that we get a different answer in the simulation

scheme described in this paper?
First, define Mt :=

∑
i∈N1,a∈M iy

a
i (t), the total mass of the system at time t.

Then notice that if |Mt| < M̃ , then yai (t) = 0 for i > M̃ . Moreover,

sup
y:
∑

i∈N1,a∈M iy
a
i (t)<M̃

ρabcij (y;α, β, γ) < CM̃2,

so on the set yai (t) < M̃ , we have that y has finitely-many non-zero components and
ρ is uniformly bounded and Lipschitz, as discussed in the proof above. Moreover,
notice that Mt is a martingale, i.e., that if t′ > t then E [Mt′ |Mt] = Mt.

Then we have the following theorem.

Theorem 2. Let N,N ′ > 2M0 and consider two truncated numerical methods, one
with truncation parameter N and the other with truncation parameter N ′. More
concretely, consider any numerical methods given by (4.13), but where we replace

Kij with K
(N)
ij and K

(N ′)
ij ; call these solutions X

(N)
t and X

(N ′)
t , respectively. Then

for any set A and T > 0, there exist C1, C2 > 0 such that

sup
t∈[0,T ]

∣∣∣P(X
(N)
t ∈ A)− P(X

(N ′)
t ∈ A)

∣∣∣ ≤ C1e
−C2V .

Proof. The first observation to be made here is that as long as Mt < min(N,N ′),
then all of the statements in the theorem follow, because then the truncated kernels
and thus the evolution (3.6) would be identical. So, in short, if we show that the
probability that Mt > 2M0 is exponentially small, then the theorem follows.

Thus we consider either truncated process (we will choose X
(N)
t for concreteness)

and compute the probability of obtaining a realization with Mt > 2M0. Denote the
probability space of all outcomes of the stochastic process as Ω. Define Ω2 :=
{ω ∈ Ω : M(Xt) > 2M0}, i.e., all outcomes in the probability space where the
stochastic trajectory has twice the mass than it did at time zero. Notice that

P(Ω2) ≥ P(|M(X
(N)
t ) −M(x̂(t))| > M0). Then by Theorem 1, for any h, T > 0,

there exist C3, C4 > 0 such that

P

(
sup
t∈[0,T ]

|X(N)
t − x̂(t)| > h

∣∣∣∣ Ωc2

)
≤ C3e

−C4V ,

and, by the same theorem, there exist C5, C6 > 0 such that P(Ω2) ≤ C5e
−C6V .

Then there are C1, C2 > 0 with

P

(
sup
t∈[0,T ]

|X(N)
t − x̂(t)| > h

)
= P

(
sup
t∈[0,T ]

|X(N)
t − x̂(t)| > h

∣∣∣∣ Ω2

)
P(Ω2)

+ P

(
sup
t∈[0,T ]

|X(N)
t − x̂(t)| > h

∣∣∣∣ Ωc2

)
P(Ωc2)

≤ 1 · C5e
−C6V + (C3e

−C4V )(1− C5e
−C6V )

≤ C1e
−C2V .

The theorem then follows by the triangle inequality.
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6. Practical applications of method. Here we present a series of exhibitions of
the practical effectiveness of the methods developed in this paper. In Section 6.1
we give an example of compositional multiscaling, in Section 6.2 we exhibit the
usefulness of size-dependent weightings, and in Section 6.3 we give an example of
both at once.

6.1. Independently weighted sub-populations. In this section we address the
“compositional multiscaling problem”, as introduced in Section 1. We use the for-
mulation of Section 3 to weight particles in the rare sub-population differently to
the rest of the particles. This allows more accurate statistics to be obtained for
the sub-population while keeping the total particle number low and minimizing the
computational cost.

Here we present this application in the context of two sub-populations: com-
mon sub-population 1 and rare sub-population 2. The extension to multiple sub-
populations with varying frequency is straightforward. Take wai to be independent
of size i, so we have all particles in sub-population 1 weighted with w1 and all par-
ticles in sub-population 2 weighted with w2. For coagulation events we will take
the destination group c∗ to be whichever of the coagulating groups a or b has the
lowest weight, as described in Section 4.3. That is,

c∗i+j =

{
1 if i = j = 1,

2 otherwise,
(6.1)

and we use the optimal expressions (4.37) and (4.38).
For a numerical test of coagulating independently weighted sub-populations, we

use the Fuchs form of the Brownian coagulation kernel [26],

KB
i,j =

4π (ri + rj) (Dp,i +Dp.j)
ri+rj

ri+rj+
√
δ2i +δ2j

+
4(Dp,i+Dp,j)√
v̄2p,i+v̄

2
p,j(ri+rj)

, (6.2)

where ri and rj are the radii of the coagulating particles, Dp,i is the diffusion co-
efficient of particle i in air, δi is the correction to account for particle i in the
transition regime (see Eq. 15.34 in [26]), and v̄p,i is the thermal velocity of par-
ticle i in air. The exact expressions and constant values are specified in the file
coag_kernel_brown.F90 and its dependencies in the PartMC code [45].

Each sub-population begins at time t = 0 with a log-normal distribution with
geometric mean diameter Dg = 50 nm and geometric standard deviation log10 σg =
0.24. Sub-population 1 (blue in Figure 1) has an initial physical number concen-
tration of N1 = 105 cm−3 while sub-population 2 (red in Figure 1) has an ini-
tial physical number concentration of N2 = 102 cm−3. We assigned a density of
1000 kg m−3 and a molecular weight of 18 g mol−1 to the particles (pure water).
The temperature was set to 288 K and the pressure was 105 Pa throughout the
simulation.

Sub-population 1 particles have weight w1 and sub-population 2 particles have
weight w2. The resolution of each particle sub-population is related by the ratio

r =
w1

w2
. (6.3)

Two special cases are r = 1, corresponding to equal weights for all particles (the
equal weight case in Figures 1 and 2), and r = N1/N2 = 103, corresponding to equal
numbers of computational particles used to initially represent each distribution on
average (the equal number case in Figures 1 and 2).
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The initial mean numbers of computational particles in each sub-population,
denoted Np1 and Np2, sum to the total number of computational particles, Np1 +
Np2 = Np, and have weights corresponding to the physical number concentrations,
so w1N

p1 = N1 and w2N
p2 = N2. Using (6.3) gives

Np1 =
N1/N2

r +N1/N2
Np, (6.4)

Np2 =
r

r +N1/N2
Np. (6.5)

In the case simulated here the physical concentration ratio is N1/N2 = 103, so
when r = 1 we have Np1 ≈ Np and Np2 ≈ Np/103, meaning that almost all
computational particles are in the common sub-population 1 and almost none are
in the rare sub-population 2. Correspondingly, when r = N1/N2 = 103 we have
Np1 = Np2 = Np/2, so the computational particles are evenly shared between the
two sub-populations.

Figure 1 shows the number size distributions after t = 24 h of simulation for
the equal weight and equal number cases, compared to very accurate finite-volume
simulations. The error bars show the 95% spread for the particle simulations. The
finite-volume simulations use a two-population scheme, with one set of finite-volume
bins tracking each sub-population. Each combination of sub-populations coagulate
using a high-resolution finite-volume scheme [3], with the coagulation products from
1–1 and 2–2 coagulations remaining in the respective sub-population, and 1–2 cross-
coagulations going to the rare sub-population 2 following (6.1).

As we might expect, in Figure 1 the equal weights method substantially under-
resolves sub-population 2, while an equal-number weighting dramatically improves
the resolution of sub-population 2 while only slightly degrading the sub-population 1
resolution.

The trade-off between sub-population 1 and sub-population 2 resolution as the
ratio r is varied is quantified in Figure 2. Here ratios ranging from r = 1 to r = 106

are used for computational particle number varying from Np = 103 to Np = 105.
The special cases of equal weight (r = 1) and equal number (r = 103) are indicated
by circles and squares, respectively.

For ratios between r = 1 and r = 103 we see a trade-off between sub-population 1
expected error and sub-population 2 expected error, with substantial improve-
ments in sub-population 2 error accompanied by very small degradations in sub-
population 1 error. Equal-number weighting gives a reduction in sub-population 2
error by about 17 times from equal weights, at the expense of an increase of about
1.4 times in sub-population 1 error.

For ratios above r = 103, the simulation has more computational particles resolv-
ing sub-population 2 than sub-population 1. This does not result in improved sub-
population 2 error, however, because the dynamics of sub-population 2 are highly
dependent on sub-population 1 for coagulation partners. We thus see degrading per-
formance in both sub-populations as the ratio increases and more computational
particles are used for sub-population 2.

As shown in Theorem 1, we expect that the particle solutions will converge to
the mean-field solutions generated by the very accurate finite-volume method as
the number of particles increases, Np →∞. The particle error versus Np is shown
in Figure 3, and we see that the method is indeed converging as Np increases, as

predicted, with rate N
−1/2
p .
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Figure 1. Size distributions for two particle sub-populations using
the scheme described in Section 6.1 with Np = 103 particles. Top:
equal weightings for both distributions. Bottom: equal computa-
tional number for each distribution. The points are the mean of the
particle process, while the error bars show 95% spread of realiza-
tions, not confidence intervals for the mean. The solid lines are very
accurate finite-volume solutions. Using an equal-number rather
than equal-weight weighting reduces sub-population 2 expected er-
ror by about 17 times, with an increase in sub-population 1 ex-
pected error of only about 1.4 times.

All particle simulations were implemented using the accelerated sampling scheme
of Curtis et al. [4], so the computational cost is proportional to the number of coagu-
lation events. In this subsection the number of coagulation events is almost indepen-
dent of the weighting scheme chosen, because the two sub-populations have approx-
imately equal size distributions and the coagulation kernel is only size-dependent,
with no dependence on which sub-population contains the particle. Thus the compu-
tational cost is approximately constant for each value of Np in Figure 2, independent
of the weight ratio r.
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Figure 2. Errors for two particle sub-populations for varying
number of particles Np. The weight ratio r = w1/w2 is 1, 10,
102, 103, 104, 105, and 106, moving from upper-left to down and
to the right on each line. The circle points correspond to equal
weights for both sub-populations (top panel in Figure 1), while the
square points correspond to equal numbers of computational par-
ticles for each sub-population (bottom panel in Figure 1). Error
bars are not shown as they are visually negligible.
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Figure 3. Convergence of the size distribution using the weighting
scheme from Section 6.1 for different weight ratios r for the distri-
bution of group a = 1 particles and group a = 2 particles. The
baseline for computing the error is a very accurate finite-volume
solution nfv.
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6.2. Combined size-dependent weightings. Another practical problem that of-
ten arises in particle simulations concerns the relative scarcity of large particles
formed by many coagulation events from small precursors, namely the “size multi-
scaling problem” discussed in Section 1. This occurs physically in raindrop forma-
tion, where approximately 106 small precursor droplets with diameter D ≈ 10 µm
must coagulate to form a single, comparatively rare, rain droplet with diameter
D ≈ 1 mm [29].

While it would in principle be possible to classify small and large particles into
different sub-populations and use the differential weighting scheme discussed in
Section 6.1, in practice it is often difficult to predict in advance just where the
transition between these two sub-populations should be chosen, and how they should
be independently weighted. In addition, it is undesirable to introduce an artificial
cutoff in the accuracy of the simulation as a function of particle size, such as would
arise from using discrete sub-populations to classify and weight particles.

An alternative approach, as developed in the Weighted Flow Algorithm (WFA)
[7, 28], weights particles with a smooth function of particle size. In DeVille et al. [7]
it is shown that power-law weightings of the form w(D) ∝ Dα are efficient for many
physical simulation problems, where D is the particle diameter. This is equivalent
to taking wai ∝ iα/3 in our notation.

While such exponential size-dependent weightings can be very efficient, they
typically require a priori knowledge of the system evolution, so that the correct
weighting function exponent can be selected. We can overcome this limitation and
develop an a posteriori adaptive scheme by using the framework from Section 3.
This extends the concept of composite weighting schemes [7, Section 6.7] to allow
interactions between the component weighted particle sets.

For simplicity of exposition, we will only consider particles to be differentiated by
size in this section, and we will discuss multiple sub-populations with size-dependent
weightings in Section 6.3. We divide the particle population into two groups, so
that each particle group can be doubled and halved independently to control total
computational particle number, but the weight wai will be independent of group
number a.

To construct the weighting function, take precursor weight factors νbi for b ∈
M and computational volumes V b. Taking a total computational volume V , we
compute the weights wai by the harmonic mean

wai =
1

V

(∑
b∈M

(
νbi
V b

)−1
)−1

. (6.6)

The harmonic mean is used as it corresponds to the minimum-variance estimator
for a composite simulation [7, Section 6.7]. In the numerical results for this section
we use two precursor weight factors given by ν1

i = 1 and ν2
i = i−1 (corresponding

to α = 0 and α = −3 diameter weighting exponents), and we use the optimal
expressions (4.37) and (4.38).

For a numerical example we use a sedimentation kernel with an initial log-normal
distribution of particles, having geometric mean diameter Dg = 20 µm and geomet-
ric standard deviation log10 σg = 0.2. As in the example in Section 6.1, we assigned
a density of 1000 kg m−3 and a molecular weight of 18 g mol−1 to the particles. The
temperature was set to 288 K and the pressure was 105 Pa.
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Figure 4. Size distributions (left column: number, right column:
mass) for a sedimentation kernel computed using three different
weighting schemes andNp = 103 particles. Top row: flat weighting.
Center row: inverse-mass weighting. Bottom row: Combined flat-
and-inverse-mass weighting as described in Section 6.2. The blue
and red circles show the particle solution at times t = 0 and t =
10 min, respectively, while the solid lines are very accurate finite-
volume solutions. Observe that the combined weighting scheme
accurately captures both the number and mass size distributions.

The sedimentation kernel is given by

KS
i,j = π (ri + rj)Ei,j |vs,i − vs,j |, (6.7)

where ri is the radius of particle i, Ei,j is the collision efficiency for particles i
and j according to Hall [20], and vs,i is the settling velocity of particle i according
to Beard [2]. The exact expressions and constant values are specified in the file
coag_kernel_sedi.F90 and its dependencies in the PartMC code [45].

We take exponential weightings with exponents ranging from α = 0 (flat weight-
ing) to α = −3 (inverse-mass weighting), as well as a weighting composed of the
combination of α = 0 and α = −3, as described above.
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Figure 5. Number and mass errors for the sedimentation simula-
tions described in Section 6.2 shown in Figure 4 for varying number
of particles Np. The solid lines show size-weighted simulations with
varying weight exponent α ∈ {0,−1,−2,−3} (ordered from top
to bottom). The filled circles are combined flat-and-inverse-mass
weighted simulations.

Figure 4 shows the number (left column) and mass (right column) size distribu-
tions at time t = 0 and after t = 10 min of simulation for Np = 103 computational
particles and three different weighting schemes. We see that the α = 0 (flat) weight-
ing (top row) completely fails to capture the development of the second size peak
around D = 5 mm and so mis-predicts both the number and size distributions. The
α = −3 weighting (center row) is able to capture the second size peak and resolves
the mass distribution fairly well, but fails to resolve the number distribution ade-
quately. In contrast, the combined weighting scheme (bottom row) resolves both
the number and size distributions well and accurately captures the evolution of the
system.

The errors for varying exponent α and number of particles Np are shown in
Figure 5. Changing the exponent from α = 0 (upper points) through to α = −3
(lower points) tends to increase number error while reducing mass error. This
is because larger particles have lower weight with negative exponents, leading to
greater resolution at larger sizes. The filled circles show the errors for the combined
α = 0 and α = −3 weightings, and we see that this delivers equal-best mass error
with better-than-best number error for a given number of computational particles
Np. Compared to the simple α = 0 weight, the combined weighting has at least a
factor of 2 improvement in number error and more than 20 times improvement in
mass error. Compared to the simple α = −3 weight, the combined weighting has
about the same mass error and about 5 times small number error.

The benefits of the combined weighting are less substantial when compared to
the simple α = −1 or α = −2 weights. The main advantage of the combined
weighting, however, is that it delivers excellent error performance without needing
to be tuned to the particular simulation. Looking at the red solid number curves
(finite-volume simulations) in Figure 4, we see that the peak-to-peak straight line
fit has a slope of about α = −1.8 on the log-scale, which is why the α = −2 weight
works well. For different initial conditions or simulation parameters, however, this
weight will not perform as well. In contrast, the combined weighting scheme adapts
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Figure 6. Convergence of the number and mass size distribution
using the weighting scheme from Section 6.2 for different weight
exponents α and for the combined weighting. The baseline for
computing the error is a very accurate finite-volume solution with
number distribution nfv and mass distribution mfv. The exponents
α = −1 and α = −2 have similar behavior (not plotted).

to the simulation and so delivers excellent resolution without needing to know the
solution behavior in advance.

Theorem 1 implies that the particle solutions will converge to the mean-field
solutions as the number of particles Np increases. The particle error versus Np is
shown in Figure 6 for the number and mass distributions, which shows that the
method is in fact converging as Np → ∞. For the flat weighting (α = 0) the
convergent regime does not begin until Np ≥ 104, as is expected from Figure 4,
where we see very poor behavior for α = 0 with only Np = 103 particles.

The computational cost of the simulations shown in Figure 4 is again linear in
the number of coagulations that occur, as described in Section 6.1. The inverse-
mass (α = −3) and combined (α = 0 and α = −3) weightings result in simulations
that are more expensive than the flat (α = 0) weighting, because there are more
coagulation events being resolved. This is because the sedimentation kernel (6.7)
is largest between particles of different sizes, so the simulations that better resolve
the large particles will simulate more coagulation events between small and large
particles.

6.3. Size-dependent sub-population weightings. The two practical problems
addressed by the schemes of Sections 6.1 and 6.2, namely the composition multi-
scaling problem and the size multiscaling problem, frequently occur simultaneously
in application scenarios [23, 43]. In such cases, highly efficient simulations can be
obtained by combining the independent sub-population weightings of Section 6.1
with combined size-dependent weightings of Section 6.2.

We will not present a comprehensive convergence study of the combined algo-
rithm, but rather illustrate its behavior in Figure 7. This shows the Brownian kernel
test-case from Section 6.1 with four different simulations, and both the number and
mass output distributions. The four cases (top to bottom) in Figure 7 are: (1) a
naive unmodified simulation, with equal weights for all particles; (2) sub-population
weights using the Section 6.1 scheme, but no size-dependence; (3) size-dependent
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Figure 7. Size distributions (left column: number, right column:
mass) for a Brownian kernel simulation with two particle classes
(blue and red), with the same parameters as in Figure 1. Top row:
flat size weighting (α = 0) with equal weights in each class (r = 1).
Second row: flat size weighting (α = 0) with equal number in each
class (r = 103). Third row: combined α = 0 and α = −3 size
weighting with equal weights in each class (r = 1). Bottom row:
combined α = 0 and α = −3 size weighting with equal number in
each class (r = 103).
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weights using the combined scheme of Section 6.2, but no sub-population differen-
tiation; and (4) using the schemes of Sections 6.1 and 6.2 simultaneously.

The observed numerical behavior corresponds to that described in detail in Sec-
tions 6.1 and 6.2. The simulations (2 and 4) with differentially-weighted sub-
populations have dramatically improved error in sub-population 2, as explained
in Section 6.1. The simulations (3 and 4) with combined size-dependent weighting
have excellent behavior for both number and mass distributions, rather than just
the number distribution, as explained in Section 6.2. In summary, simulation 4
combines the advantages of both the previously outlined methods.

7. Conclusions. This work describes the method development of particle simula-
tions for the Smoulchowski equation where multiple particle sub-populations exist
and possibly interact. Our particular target problem considered sub-populations
that may exhibit large differences in their abundances. This is a common feature
in cloud microphysics and atmospherically relevant aerosol applications and poses
a challenging modeling problem. We conceptualized this challenge as the “size
multiscaling problem” and the “compositional multiscaling problem”.

We proved convergence for these methods under very weak assumptions and
developed a family of consistency conditions that result in the correct mean during
the simulation. Due to the many degrees of freedom in the parameters of the
stochastic simulation, we showed that many choices gave consistency, so we also
developed the conditions for the optimal consistent method. We stated and proved
a family of theorems to guarantee that these methods are accurate in the limit of
large population size.

Finally, we presented numerical simulations illustrating the applicability and
efficacy for two atmospheric relevant aerosol systems, one representative of the size
multiscaling problem using the sedimentation kernel, and the other representative
of the compositional multiscaling problem, using the Brownian kernel. Since in
practice the two problems often occur simultaneously, we also showed that the
methods can be combined and result in excellent behavior for both number and
mass distributions.
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