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Abstract— While peer-to-peer consensus algorithms have en-
viable robustness and locality for distributed estimation and
computation problems, they have poor scaling behavior with
network diameter. We show how deterministic multi-scale con-
sensus algorithms overcome this limitation and provide optimal
scaling with network size, but at the cost of requiring global
knowledge of network topology. To obtain the benefits of both
single- and multi-scale consensus methods we introduce a class
of stochastic message-passing schemes that require no topology
information and yet transmit information on several scales,
achieving scalability. The algorithm is described by a sequence
of random Markov chains, allowing us to prove convergence
for general topologies.

I. INTRODUCTION

A variety of problems occurring in the area of multi-

agent coordination can be solved by consensus algorithms,

e.g., formation, alignment, decision making, synchronization,

data fusion, and so on [1][2]. These algorithms are robust to

network failure and changing topologies, since algorithms

depend on local information only, and every node functions

identically.

However, existing consensus schemes require a great deal

of communication or unrealistically dense network topolo-

gies to ensure acceptable convergence in practice when

applied to large scale networks. Ironically, this prevents the

practical implementation of decentralized estimation tech-

niques for large scale real world problems with limited

bandwidth, even though they were originally aimed at exactly

such large systems. There have been a variety of efforts to

achieve fast convergence of decentralized consensus [3]– [5].

On the other hand, the multigrid computational method,

which was originally developed for efficiently solving elliptic

boundary value problems, is an example of a scalable linear

iterative solver and is a well-established technique for solving

large-scale problems. The method builds a hierarchy in the

state domain and separates solving the various wave-number

components on different layers, thus quickly decaying all

wave-number components of the residual. This results in

accelerated convergence compared to conventional iterative

relaxation schemes (e.g., Jacobi or Gauss-Seidel) [6][7], and

importantly converges in a number of iterations independent

of the problem size.
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The multiscale consensus scheme was developed after

observing the similarity between the slow convergence of de-

centralized consensus and the slow convergence encountered

in conventional relaxation schemes[8]; high wave-number

components diminish quickly in several iterations, but after

that the node values do not change very quickly since

they have local information only. A multiscale scheme can

thus also accelerate the slow convergence of decentralized

consensus. The basic idea of this is to construct a virtual

multilevel hierarchy, across which the local information is

passed to distant nodes. All the nodes undergo two op-

eration modes (wake and sleep), where the current mode

is determined by the hierarchical structure. That is, as the

consensus goes up to coarse levels, the number of sleeping

nodes increases. This simple concept was demonstrated in

a basic consensus problem with poor network connectivity

and it was shown that the proposed scheme substantially

accelerates the convergence.

However, such deterministic multi-scale schemes require

every node to maintain some knowledge of a multilevel

hierarchy, which reduces the robustness and expandability

of distributed systems. In this paper, a stochastic multiscale

consensus scheme is developed to overcome such drawbacks.

The wake/sleep behavior of nodes in deterministic multiscale

consensus is mimicked by stochastic mode transition control,

and therefore the new scheme does not require each node

to maintain hierarchy information. This is advantageous

because the robustness and expandability of the stochastic

multiscale consensus can thus be as good as that of conven-

tional consensus schemes.

Mode transition strategies determine the distribution of

wake/sleep modes, and thus control the convergence rate

of the consensus scheme. Several strategies are chosen and

analyzed to explore the possibilities to recover similar wake-

sleep distributions with the deterministic consensus.

For simplicity this paper only considers sensors arranged

in a 1D network topology and assumes that the data can pass

through sleeping nodes with no delay. These restrictions are

not fundamental and will be removed in future works.

Previous studies on robust information fusion addressed

convergence in the presence of stochastic communication

graphs or switching topologies [9][10]. The current work

investigates how the stochastic communication patterns can

be used to accelerate consensus.

In the following sections, conventional and multiscale

consensus schemes are reviewed first, and then the stochastic

consensus scheme is introduced. Several efforts to improve

and characterize the scalability are described, and similarities

between multiscale schemes and stochastic schemes are
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analyzed and compared. The proposed scheme is applied

to the conventional consensus schemes and the randomized

gossip algorithm. Performance and limitation of the proposed

scheme are also discussed.

II. CONVENTIONAL CONSENSUS

A. Consensus Scheme

Consensus is an iterative process to let every node in

a networked group of n nodes on a graph G = (V, E)
asymptotically compute the average value of a specific

information using only local communication. Let si(0), the

initial information to be averaged, where the subscript i ∈ V
denotes the node number. Each node communicates with

locally connected peer nodes to update its information. Note

that the node does not require the information from distant

(non-adjacent) nodes.

Conventional consensus is the update:

si(k + 1) = si(k) +
∑

(i,j)∈E

wij (sj(k) − si(k))

Metropolis weights wij are given by:

wij =











min {1/(1 + di), 1/(1 + dj)} if (i, j) ∈ E
1 −∑(i,l)∈E wil if i = j

0 otherwise

where wij is the ij element of W ∈ R
n×n, and di = |Ni|

represents the degree of node i (Ni = {j ∈ V|(i, j) ∈ E}).

The symmetric weighting matrix W is generally cho-

sen to yield fast consensus. Although numerical techniques

to compute the optimal weights (for the fastest mixing)

were suggested recently [3], a simple heuristic choice, the

Metropolis weight matrix, is still attractive for decentralized

consensus, in that it requires only knowledge of the local

topology.

B. Convergence

For simple analysis, suppose that the information si(k)
is a scalar. Assuming time-invariant network topology, the

synchronous consensus iteration is simply,

s(k + 1) = Ws(k)

= W k+1s(0)

where s(k) = [ s1(k) s2(k) . . . sn(k) ]
T

.

Since the row and column sum of the symmetric W sum

to 1, this doubly stochastic matrix W has 1 as its largest

eigenvalue with corresponding eigenvector 1 ∈ R
n, by the

Perron-Frobenius theorem. Hence, multiplying W conserves

the average of s(k), and s(k) converges to 1
n11

T s(0) as

k → ∞. To check this, let the eigenvalues of W be λ1 =
1 ≥ |λ2| ≥ . . . ≥ |λn|, with corresponding eigenvectors

v1 = 1, v2, v3, . . . , vn. Multiple eigenvalues of λ = 1 (but

with distinct eigenvectors) occur when some of nodes are

separated from the rest, however no multiplicity is assumed

here. Now, let the eigenspace decomposition of s(k),

s(k) =
1

n
11

T s(k) +

n
∑

l=2

clvl

=
1

n
11

T s(0) +
n
∑

l=2

clvl

for some constant cl. Defining the averaging error e(k) =
s(k) − 1

n11
T s(0) =

∑n
l=2 clvl,

‖e(k + 1)‖ =

∥

∥

∥

∥

s(k + 1) − 1

n
11

T s(0)

∥

∥

∥

∥

=

∥

∥

∥

∥

Ws(k) − 1

n
W11

T s(0)

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

W

n
∑

l=2

clvl

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

l=2

clλlvl

∥

∥

∥

∥

∥

≤ |λ2| ‖e(k)‖
As the number of iterations increases, ‖e(k)‖ shrinks

by the second largest eigenvalue modulus (SLEM), |λ2|, at

least. In case of time-invariant network topology, |λ2| < 1
guarantees the convergence:

lim
k→∞

s(k) =
1

n
11

T s(0)

This implies that the convergence is totally dependent

on the eigenvalue/eigenvector structures of W . The decay

rate of each component is determined by the eigenvalue

corresponding to the basis vector. i.e., the clvl component

decays quickly for large wave number l. Therefore appro-

priate design of the eigenstructure of W can improve the

convergence.

C. Numerical Example

The following sensor network is considered throughout

this paper: 64 sensors in a periodic 1D network (circulant

graph Laplacian and weight matrix), whose initial measure-

ments are randomly distributed. We will test the consensus

algorithms to track how the estimates converge to the average

of initial measurements. Note here that W is circulant and

diagonalized by the Fourier matrix F . i.e., W = FΛF∗.

Since every node is connected to two other nodes (di =
dj = 2), every edge’s weight is set to wij = 1/3 if (i, j) ∈ E .

In case (i, j) ∈ E and di = dj = 1, double message paths are

established, and the effective weights becomes wij = 2/3.

The latter happens in the highest layer of some multiscale

schemes and some stochastic schemes.

The consensus history by a conventional scheme is shown

in Fig. 1. It is observed that the high wave-number compo-

nents diminish rapidly in several consensus sweeps, resulting

in a smooth profile and slow convergence thereafter. This pre-

mature stagnation occurs because the low wave-number com-

ponents correspond to the slowly decaying modes (eigenval-
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Fig. 1. Consensus history by conventional scheme (top), multiscale scheme
(middle), and stochastic scheme (bottom). Initial measurements are indicated
by cross marks. The lines represent the consensus results after successive
iterations - the same color indicate equivalent numbers of node updates.

ues close to 1) of the weight matrix, whereas the high wave-

number components are associated with rapidly decaying

small eigenvalues (See the red line in Fig. 4). Unfortunately,

this frequently happens in conventional consensus schemes

which are based on local diffusion mechanisms.

III. DETERMINISTIC MULTISCALE CONSENSUS

A. Deterministic Multiscale Consensus

In the previous example, we have observed that the nodes

start to reduce the update amount, as soon as the spatial

profile smooths. This is because each node, to its (local)

knowledge, believes it has achieved a satisfactory approxi-

mation of the true average, even though it still has a large

deviation from a global-scale view. This sort of problem

is frequently encountered in iterative methods for solving

systems of linear equations.

To resolve this problem we propose a multiscale consensus

scheme which transfers the information between distant

nodes, so that the nodes can obtain the global information

on multiple scales. In principle, the basic concept of this

approach is analogous to the fundamental multigrid compu-

tation idea.

A virtual hierarchy of nodes is constructed, in each level of

which the consensus scheme is executed on a different scale.

We call the series of consensus sweeps along the different

levels the cycle, compared to the term from the multigrid

computation field, v-cycle.

.
 
 
.
 
 
.
 

.
 
 
.
 
 
.
 

. . . 

. . . 

. . . 

. . . 

Ll

L1

L2

L3

Fig. 2. Basic concept of multiscale consensus (Note that the graph reduces
by half at the next upper level).

Designing the hierarchy and the cycle (the number of

layers, the number of consensus sweeps in each layer, and

the sequence of levels in which the consecutive consensus

sweeps occur) is not trivial and could be formulated as

another complicated problem. However, here we present one

of the simplest choices for such a scheme.

Multiscale consensus scheme:

1) For the finest level (L1, G = (V, E)),

a) Execute a consensus sweep for G
2) For the next coarse level (L2),

a) Form 2 subgroups V(2)
0 = {i ∈ V|(i mod 2) =

0}, V(2)
1 = {i ∈ V|(i mod 2) = 1}, each of

them with isomorphic topologies

b) Execute consensus sweeps for each group G(2)
0 ,

and G(2)
1

...

3) For the l-th level (Ll)

a) Form 2l−1 subgroups V(l)
k = {i ∈ V|(i

mod 2l−1) = k}, for 0 ≤ k ≤ 2l−1 − 1, each

of them with isomorphic topologies

b) Execute consensus sweeps for each group

G(l)
0 , . . . ,G(l)

2l−1−1
...

4) Finishing the coarsest level (L⌊log
2

n⌋), go back to [1]

* Number of active subgroups in each level depends

on cycle design

Note that most of nodes undergo periodical wake-sleep

transitions, which is governed by the cycle structures. When

a node is sleeping, it does not mix the incoming message but

passes it to the other side. We assume that the communication

cost is ignorable, so instantaneous message passing between

distant nodes through sleeping nodes are made. i.e., we

presume that this is equivalent to periodical change of graph

topology.
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Fig. 3. Convergence rates. Stochastic scheme is with p = 0.1. Comparisons
are based on the equal number of node updates.

The consensus history and convergence of the proposed

multiscale scheme is plotted in Fig. 1 and Fig. 3. It is

obvious from Fig. 4 that the proposed scheme substantially

accelerates the convergence, eliminating low wave-number

components efficiently. Comparisons in these plots are based

on the equal number of node updates. In Fig. 4, the eigen-

values are scaled to the equivalent number of node updates.

(|λ|1/N , where N is the number of layers)

B. Convergence

A cycle of multi-level consensus is expressed by a series

of conventional consensus iterations.

si(k + 1) = W (N)W (N−1) · · ·W (1)s(k)

= WMs(k)

where WM is the composite weight matrix, WM =
W (N)W (N−1) · · ·W (1), and N = ⌊log2 n⌋ is the number

of levels.

W (l) matrices are determined by the same procedure

as W (1) is generated, but with the l-th level topology,

G(l) = (V(l), E(l)). Suppose that W (1),W (2), . . . ,W (N) are

all Fourier diagonalizable, then the eigenvalue of WM is just

the product of the eigenvalues of each matrix.

F∗W (l)F = Λ(l) for l = 1, 2, . . . , N

F∗WMF = Λ(N)Λ(N−1) · · ·Λ(1)

= diag

([

N
∏

i=1

λ
(i)
1 ,

N
∏

i=1

λ
(i)
2 , . . . ,

N
∏

i=1

λ(i)
n

])

We can define the scaled eigenvalue λ̄k as an index of

average convergence rate. See Fig. 4 for eigenvalues for

various multiscale structures.

λ̄2 = λ
1/N
2 =

(

N
∏

i=1

λ
(i)
2

)1/N

C. Scalability

The spectral gap for growing network size is plotted in

Fig. 8. It is observed that the spectral gap of the multiscale

scheme decreases moderately as the network (n) grows,

compared to the conventional consensus.

However, we should notice that every node requires some

knowledge of network hierarchy, which breaks the “de-

centralization” policy, and thus loses the robustness and

expandability of decentralized systems. Also, implementing

the multiscale consensus in a decentralized way is not trivial.

This particular issue is addressed in the following section.

IV. STOCHASTIC MULTISCALE CONSENSUS

In the multiscale consensus, each node undergoes pe-

riodical wake-sleep mode transitions, which is governed

by the multilevel hierarchy construction. It accelerates the

convergence and makes the algorithm scalable. However it

deteriorates the robustness and expandability of distributed

network systems, and thus is disagreeable for decentralized

algorithms.

In order to resolve this, we develop a stochastic multiscale

consensus scheme, in which the mode transition is controlled

stochastically. Because this operation is independent of the

network hierarchy, the resulting algorithm is fully decen-

tralized, with the stochastic wake-sleep mode transition still

providing the accelerated convergence.

Several strategies to control the wake-sleep mode distri-

bution are discussed in this section.

A. Naive Stochastic Consensus

A simple idea is to let the transition be controlled by the

predetermined probability; we call it the wake probability.

When a message arrives, the node decides whether to be

awake (receive the message and compute average) or to be

asleep (just pass the message to the other direction), based

on the wake probability. This forms some distribution of

wake/sleep mode transitions, and we may want to control the

distribution to have a similar behaviors of the deterministic

multiscale algorithm. Note that implementing this does not

require any knowledge of hierarchy information.

Fig. 1 and Fig. 3 display the consensus result for a specific

instance with p = 0.1. Note that these plots show the result

for only a single sample instance, however the expected

results or other sample results do not differ qualitatively.

B. Convergence

The network topology changes randomly, thus

W (0), W (1), . . . , W (k) are now a series of random

matrices. Applying E [Ws] = E[W ]s recursively, we get

the expectation of s(k) as follows.

E[s(k + 1)] = E[W ]s(k)

= E[W ]k+1s(0)

E[W ] satisfies E[W ]1 = 1 and 1
T
E[W ] = 1

T .

For the given numerical example with 64-sensor ring

networks, the expectation of the weight matrix with the

wake probability p is obtained as follows. Note that E[W ]
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Fig. 4. Fourier coefficients of multiscale schemes WM , scaled to equivalent
number of node updates (1 − |λ|1/N is plotted).

is a positive symmetric circulant matrix, thus by the Perron-

Frobenius theorem for positive matrices, the unique largest

eigenvalue (λ1) of E[W ] is 1, and the following eigenvalues

are strictly less than 1. i.e., 1 > |λ2| ≥ . . . ≥ |λn|.

E[wij ] =
2

3
Pr((i, j) ∈ E , di = dj = 1))

+
1

3
Pr((i, j) ∈ E , di = dj = 2)

=
2

3
p2(1 − p)n−2

+
1

3
p2{(1 − p)j−i−1 − (1 − p)n−2

+ (1 − p)n+i−j−1 − (1 − p)n−2}

=
1

3
p2{(1 − p)j−i−1 + (1 − p)n+i−j−1}

E[wji] = E[wij ] (i < j)

E[wii] = 1 −
∑

(i,j)∈E

E[wij ]

Similarly with the deterministic case, the averaging error

‖e(k)‖ contracts as k increases.

E ‖e(k + 1)‖ = E

∥

∥

∥

∥

s(k + 1) − 1

n
11

T s(0)

∥

∥

∥

∥

= E

∥

∥

∥

∥

W (k)s(k) − 1

n
W (k)11

T s(0)

∥

∥

∥

∥

= E

∥

∥

∥

∥

∥

W (k)

n
∑

l=2

cl(k)vl(k)

∥

∥

∥

∥

∥

= E

∥

∥

∥

∥

∥

n
∑

l=2

cl(k)λl(k)vl(k)

∥

∥

∥

∥

∥

≤ E|λ2| ‖e(k)‖

Since E|λ2(k)| is strictly less than 1, the stochastic

multiscale consensus converges to the correct average.
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Compare the eigenvalue structures of the naive stochastic

scheme in Fig. 5 with that of the full multiscale scheme

in Fig. 4. This simple approach significantly improves the

spectral gap. Also, the changed distribution resembles that of

the multiscale scheme, in that the low wave-number regions

are improved much and the high wave-number regions are

deteriorated. Still, this is acceptable since the minimum value

is increased and it is what affects the long run convergence

behaviors most.

The improved convergence can be interpreted in a different

way, by the message passing distance distribution. For

instances, conventional scheme relies only on the length-1

message passes, while multiscale scheme evenly distributes

to length-1,2,4,8,... message passes. In the distributions for

various schemes presented in Fig. 6, the naive stochastic
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Fig. 7. Scaled SLEM of E[W ] for various wake probabilities and network
sizes. Star marks are the optimal p for given network size.

scheme with a clever choice of p imitates the distribution of

multiscale scheme very well. Hence we can conclude that the

naive stochastic consensus scheme is a proper approximation

of the multiscale scheme.

C. Optimal Wake Probability

Given the network structures (the number of nodes in

this numerical example), we can find the optimal p∗ that

minimizes the scaled SLEM of E[W ], which results in the

fastest convergence of the naive stochastic consensus.

Fourier decomposition of E[W ] follows,

F∗
E[W ]F = diag([λ1 λ2 . . . λn])

Here, the scaled SLEM (for fair comparison based on the

equal number of node updates) is defined as λ̄i = |λi|1/p.

λ̄i =
∣

∣

√
nfT

i E[w1]
∣

∣

1/p

where, fi ∈ R
n is the i-th column of F , and E[w1] ∈ R

n

is the first column of E[W ]. Note that the vector E[w1] is a

function of p.

Fig. 7 shows the scaled SLEM of E[W ] for varying p
and n. Note that p∗ decreases inverse-proportionally as the

network grows.

D. Scalability

The scale performances of these schemes are presented

in Fig. 8. For fair comparison, the eigenvalues plotted here

are scaled to the equal number of node updates; this also

implicates the instantaneous message passing assumption.

Compared by that metric, it is observed that the naive

stochastic scheme with the optimal wake probability is

superior to the others in scalability.
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Fig. 8. Spectral gap of consensus networks with increasing sizes, scaled
to equal number of node updates.

V. APPLICATION TO GOSSIP ALGORITHMS

In the previous sections, we demonstrated that stochastic

message passing can significantly improve the convergence,

but under the instantaneous message passing assumption.

To investigate this in a more realistic situation where the

communication cost matters, we applied a similar concept

to the randomized gossip algorithm in a way that does not

require such a tough assumption, thus the performance is

fairly compared without any significant assumptions.

The gossip algorithm can be interpreted as a variant

of consensus algorithms. A node, i, in the given graph

G = (V, E) is randomly activated. Then the activated node

chooses one of its neighboring nodes, j ∈ Ni, randomly

according to some probability distribution pij , finally the

two nodes communicate and average their values to update.

A sequence of such actions is repeated until convergence.

Optimizing the distribution pij for fast convergence can

be posed as a simple convex problem and thus solved

efficiently[9].

For instance, the 64-sensor circular networks, as in the

previous numerical examples, has the optimal probability

distribution as, pij = 1
2 if (i, j) ∈ E , and pij = 0 otherwise.

A. Gossip Algorithm with Stochastic Message Swap

Now we apply the stochastic message drop/exchange

concept to this randomized gossip algorithm. We will denote

the following steps as one update.

1) Activate a node randomly. Denote it by i.
2) Choose a neighboring node j ∈ Ni according to the

probability distribution pij .

3) With probability qij , two nodes average their values to

update (wake mode). Otherwise, two nodes swap their

values to update (sleep mode).

4) Repeat until convergence.

Because this simple modification does not increase the

communication or computational load, we can make a fair
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Fig. 9. Convergence histories of gossip algorithms for 10-sensor circular
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corresponds to the original randomized gossip algorithm in [9].

comparison between this and the original scheme.

Fig. 9 displays the convergence histories of gossip algo-

rithms with several wake probabilities, q. Note the improved

convergence for some range of wake probability. Although

this example confines itself to a single random instance, it

has the following nontrivial implications: stochastic message

swapping increases the chances of messages traveling farther,

thus improving the convergence; furthermore, the plot claims

the existence of the optimal wake probability for the fastest

convergence, since the convergence rate is increased as the

wake probability decreases from 1 to some critical point, and

then starts to decrease.

This demonstrates a simple application of the proposed

stochastic message passing idea to the gossip protocol. In

order to improve more, we may try to jointly optimize pij

and qij , or let qij be a function of other information which

is locally available to node i and j.

VI. CONCLUSION AND FURTHER RESEARCH

A multiscale consensus scheme was developed to improve

the unbalanced slow convergence of the conventional peer-to-

peer, diffusion-based consensus. Although it is demonstrated

to achieve substantial acceleration in eliminating large wave-

number error components, this scheme requires every node

to maintain some level of hierarchy information of the whole

network, which is not desirable for robustness or scalability

issues.

To overcome such drawbacks, a stochastic multiscale

scheme is proposed. Stochastic mode transition control simu-

lates the wake-sleep behaviors of the deterministic multiscale

consensus, and therefore the new scheme does not require

each node to maintain the hierarchy information. It is shown

that the proposed stochastic scheme provides equal conver-

gence acceleration to the multiscale scheme, while recov-

ering the robustness and scalability of standard consensus

methods. Similarities between the stochastic scheme and the

multiscale scheme were also analyzed in several different

aspects.

The results presented in this paper assume instantaneous

message passing between distant nodes. i.e., when connected

nodes are in the sleep mode, the incoming message is

not mixed but passed to the other side, and this happens

immediately without latency. However, this assumption may

not be practically acceptable for some applications where the

communication process is presumably expensive. Analysis

and algorithmic development for those situations remains to

be done.

Asynchronous peer-to-peer message passing or shuf-

fling/swapping can provide potential solutions, and will allow

easy practical implementation. As an example of this, we

combined the proposed scheme with the randomized gossip

algorithm, and demonstrated that the combination with a

proper choice of wake probability can improve the conver-

gence properties. This numerical experiment demonstrates

only a simple case and further investigation is required.
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