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University (Germany) in 2005. In 2009, he obtained his PhD from the Materials Science Department at
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Computational Curriculum for MatSE Undergraduates

0. Abstract

Computational materials modeling and design has emerged as a vital component of materials
research and development in academic, industrial, and national lab settings. In response, US
Materials Science and Engineering (MatSE) departments and the federal government recognize
the need to incorporate computational training into undergraduate MatSE education. Our faculty
team at the University of Illinois at Urbana-Champaign (UIUC) is addressing this growing need
with a comprehensive computational component integrated into the MatSE curriculum.
Throughout their coursework, undergraduates complete a series of computational modules of
progressing complexity, each module modeling the principles taught in its containing course.
Computational lectures accompany most modules and further illustrate how computational
methods solve real-life science and engineering problems. The computational curriculum is
supported by a dedicated teaching assistant who helps with module development, delivers
computational lectures, and offers additional office hours. Now, three years since initial
implementation, multiple student cohorts have experienced the computational curriculum at all
course levels. In this paper, we present new results on the efficacy of the computational
curriculum and share more information about our continued efforts to improve the computational
modules, lectures, and their integration within the broader MatSE curriculum.

1. Introduction and Background

The rise of materials modeling has generated a nationally recognized need for materials scientists
and engineers with computational training18;23;24. In industry and academic settings alike,
computational materials science skills are in high demand as researchers seek to accelerate
materials design with computational tools24. Yet, a 2009 survey revealed that, on average,
employers desire for 50% of new hires to have computational training, while only 37% of recent
graduates actually have such training24. These trends mandate that materials science and
engineering departments around the country must better serve their students, industry, and the
nation by providing more instruction in computational thinking at the undergraduate level.

However, undergraduate programs in materials science and engineering typically saturate student
schedules with traditional content, leaving little margin for additional coursework focusing
exclusively on development of computational skills. Instead, integrating computational
instruction into traditional courses not only provides computational training, but also facilitates
improved learning of the traditional content14;15;21. In the Department of Materials Science and
Engineering (MatSE) at the University of Illinois at Urbana-Champaign (UIUC), a team of
faculty has integrated computational curriculum into the core curriculum15;16. In this paper, we
describe our continued improvements to this curriculum and new results on its efficacy.

2. Approach to Curricular Reform

As discussed in15;16, the curricular reforms described in this paper were supported by the Strategic
Instructional Initiatives Program (SIIP) of the College of Engineering at UIUC. Inspired by the



efforts of Henderson et al.4;9–11, SIIP catalyzes the creation of collaborative teaching
environments that enable faculty to enhance instruction iteratively and sustainably, targeting
large-enrollment core courses in particular12;27;28. A Community of Practice (CoP) forms such an
environment, serving to share knowledge, experience, and resources among members and to
lower the barrier to introducing, sustaining, and optimizing practices13;25;26.

Three tenured and six tenure-track faculty in the UIUC MatSE Department assembled into a CoP
to collaboratively explore, implement, and evaluate instructional and curricular innovations in
developing the computational curriculum for MatSE undergraduates. Tables 1 and 2 summarize
which courses and faculty were involved in the CoP orchestrating the integration of the
computational curriculum. In some courses, multiple instructors collaborated across semesters to
continue iterating reforms. Since most of the faculty do not specialize in computation, support
from the CoP and a Computational TA was essential to successful integration of the
computational curriculum.

Number Course Name Level Type
201 Phases and Phase Relations Sophomore Required
206 Mechanics for MatSE Sophomore Required
304 Electronic Properties of Materials Junior Semi-required
401 Thermodynamics of Materials Junior Required
402 Kinetic Processes in Materials Junior Required
406 Thermal and Mechanical Behavior of Materials Junior Required
440 Mechanical Behavior of Materials Junior/Senior Semi-required
498 Computational MatSE Senior Elective
404 Laboratory Studies in MatSE: Computational MatSE Senior Elective

Table 1: Summary of courses referred to throughout this paper. Semi-required courses are required
for some areas of concentration within the undergraduate MatSE program.

Course Fall 2013 Spring 2014 Fall 2014 Spring 2015 Fall 2015 Spring 2016 Fall 2016
201 Leal Kilian Leal∗† Kilian∗† Leal∗† Kilian∗† Leal∗†

206 Trinkle◦∗ Krogstad∗† Trinkle◦∗†

304 Weaver Schleife◦∗† Schleife◦∗†

401 Dillon Dillon Dillon∗† Dillon∗†

402 Averback Averback Bellon∗†

406 Trinkle◦ Trinkle◦∗† Maass∗† Maass∗†

440 Aboukhatwa Krogstad∗ Shang Krogstad∗†

498 Ferguson◦† Ferguson◦† Ferguson◦†

404 Ferguson◦†

Table 2: Participating faculty by course and semester. The double line shows the inception of the
MatSE CoP. Blank entries indicate that a course was not offered in the corresponding semester.
† indicates that a course included computational assignments and/or lectures, ∗ indicates that a
course included other pedagogical reforms, and ◦ indicates faculty specializing in computational
MatSE.



3. Pedagogical and Curricular Reforms

The instructional reforms originally described in15;16, including clickers, tablets, online
homework, and discussion sections, were expanded to more courses. Table 3 shows in which
semester each course implemented these evidence-based5;8;17 pedagogical practices.

In addition, most courses incorporated computational lectures to accompany the computational
assignments. Typically delivered by the Computational TA, these lectures provided more context
to the computational modules by introducing the theory, applications, and limitations associated
with the computational method being used. They also emphasized the connection between the
computational assignment and the pertinent course material, improving continuity and integration
of the computational component within the containing course, and in turn, improving integration
of the whole computational curriculum within the undergraduate MatSE program.

Finally, MSE 498 started as an elective outside of the core curriculum. In Fall 2016, the course
was redesignated as MSE 404, a fully integrated laboratory course that fulfills the senior
laboratory requirement. The course was also split into two half-semester courses: one focusing on
microscale behavior (MSE 404 MICRO) and the other on macroscale behavior (MSE 404
MACRO). Improved integration of the course into the core curriculum and the additional
flexibility offered by the half-semester courses has made the course more accessible to students
with busy schedules.

Course Clickers Tablets
Computational Computational Online Discussion
Assignments Lectures Homework Sections

201 F14 F14 F14 F14 F14
206 S14 S14 S15 S16 S14 S14
304 S15 S15 S15 S15
401 F13 F15
402 S16 S16 S16 S16 S12
406 F14 F14 F14 F16 F14 F14
440 F14 F16 F16

498/404 F13 F13

Table 3: Pedagogical reforms instituted by course. For each course, the semester in which each
reform was implemented is listed.

4. Description of Additional Computational Modules

The computational modules address four computational methods used to model materials at
different time and length scales in addition to the general topic of numerical computing. A total of
seven different software packages are used:

• Quantum Espresso7 for density functional theory (DFT)

• LAMMPS19 and GROMACS3 for molecular dynamics (MD) and OVITO22 for atomistic
visualization



• OOF220 for finite element method modeling (FEM)

• Thermo-Calc2 for calculation of phase diagrams (CALPHAD)

• MATLAB1 for numerical computing

In improving integration of the computational component into the existing curriculum, special
efforts were dedicated to developing and deploying new modules in additional courses. The
modules previously described in15;16 formed the foundation of the current computational
curriculum, and they have been retained with only minor changes. Here, we describe new
modules implemented after Spring 2015. Table 4 summarizes the computational methods used in
the modules in each course.

Course DFT MD FEM CALPHAD MATLAB
201 X X
206 X X
304 X
401 X∗ X∗

402 X∗ X∗

406 X X
440 X∗ X∗

498/404 X X X X X

Table 4: Computational methods integrated by course. ∗ indicates new modules described in this
paper; the remaining modules are described in15;16.

4.1. Molecular Dynamics

Thermodynamics of melting: Students in MSE 401 use LAMMPS and OVITO to simulate and
visualize atomic motion in melting aluminum both under constant volume and constant pressure
conditions. They analyze the thermodynamic data produced by the simulation in order to extract
the melting temperatures, heat capacities, heat and entropy of melting, and other related
thermodynamic quantities. Students also assess how their results depend on system size.

Diffusion coefficients: Students in MSE 402 use LAMMPS to simulate diffusion of particles in
water. They investigate the diffusion coefficient’s dependence on particle radius and temperature,
comparing their results to the Stokes-Einstein and Arrhenius equations.

4.2. Finite Element Method

Thermal residual stress and microcracking: Using OOF2, students in MSE 440 model the stress
distribution in two alumina microstructures with different average grain sizes after cooling at
different rates. For each combination of microstructure and cooling rate, students compute the
maximum grain boundary stress intensity factor to determine whether a crack would form.



4.3. Calculation of Phase Diagrams

Phase-based screening of anode materials: Students in MSE 401 use Thermo-Calc to identify
and characterize binary alloys that could serve as the anode material in a magnesium battery.
Students maximize gravimetric capacity while avoiding plating. For each candidate identified,
students produce and analyze free energy curves, activity curves, and the voltage profile as a
function of magnesium concentration in the host.

4.4. MATLAB

Chemical oscillators: Students in MSE 402 use the MATLAB ODE solver to model the chemical
reactions in the Belousov-Zhabotinsky oscillator and approximate the region of initial conditions
that results in chemical oscillation.

Strain-rate dependence of yield strength: Given three sample data sets from compression tests,
students in MSE 440 use MATLAB to apply the analysis methods described in6 and determine
the Johnson-Cook parameters for a Ti-Al-V alloy. Using these parameters, they then predict the
yield strength of the alloy for a different set of experimental conditions.

5. Impact of Curriculum Changes

Surveys administered in each course assessed students’ attitudes toward and reflections on the
computational curriculum. Preliminary results derived from these surveys and an evaluation of
impact on exam-based performance are discussed in15;16. Here, we describe new results obtained
from studying students’ perspectives on the computational curriculum and their own
computational competency as they progressed through the undergraduate program.

5.1. Students’ Fulfilled Desire for Computational Instruction

Two survey questions used a 5-point Likert scale to measure students’ perception of the
importance of computational skills and their desire for more computational material:

• “I think computational materials science skills are important for my post-graduation career.”
(Strongly Agree — 1 2 3 4 5 — Strongly Disagree)

• “I would like to use computation in my MatSE classes. . . ”
(Much More — 1 2 3 4 5 — Much Less)

Figures 1 and 2 show the distribution of responses from students in two required courses, MSE
201 and MSE 406, for three semesters. MSE 201 is the first disciplinary course taken by materials
science majors that includes computational material, so MSE 201 students share very similar
backgrounds in all three semesters. Indeed, two-tailed t-tests demonstrate that the mean ratings
for these two questions do not differ significantly for any pair of semesters (p > 0.3).

In contrast, MSE 406 is a junior-level course that students take after many of the other courses
containing computational material. With each semester since the introduction of the
computational curriculum in Fall 2014, MSE 406 students have been exposed to more and more
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Figure 1: Distribution of MSE 201 students’ perception of the importance of computational skills
(left) and desire for more computation in the MatSE curriculum (right) in Fall 2014, Fall 2015, and
Fall 2016. The sample sizes were 53, 43, and 46, respectively.
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Figure 2: Distribution of MSE 406 students’ perception of the importance of computational skills
(left) and desire for more computation in the MatSE curriculum (right) in Fall 2014, Fall 2015, and
Fall 2016. The sample sizes were 63, 68, and 70, respectively.

computation in their previous coursework. While the curricular reforms had no significant impact
on students’ perception of the value of computational skills (p = 0.26 between Fall 2014 and Fall
2016), they did start to satisfy students’ desire for computational MatSE curriculum (p = 0.02
between Fall 2014 and Fall 2016).



5.2. Students’ Progressing Perception of Computational Competence

To measure students’ sense of computational proficiency, several survey items asked students to
rate their level of comfort with using a variety of computational methods to perform a certain
calculation related to the content of the respective course. The following questions, each rated on
a 5-point Likert scale, are representative examples:

• MSE 206: If you were asked to determine the bending of a beam under loads, how
comfortable would you be using the following approaches?
(Very Comfortable — 1 2 3 4 5 — Very Uncomfortable)

• MSE 304: How comfortable would you be using the following approaches to determine the
density of states of GaAs?
(Very Comfortable — 1 2 3 4 5 — Very Uncomfortable)

• MSE 406: If you were asked to determine the stress field ahead of a crack tip, how
comfortable would you be using the following approaches?
(Very Comfortable — 1 2 3 4 5 — Very Uncomfortable)
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Figure 3: Students’ perception of competency
with FEM (OOF2). The sample sizes were 75,
70, and 12 for MSE 206 in Spring 2016, MSE
406 in Fall 2016, and MSE 440 in Fall 2016, re-
spectively.

Figure 3 illustrates
the distribution of students’ comfort with FEM
tools at the end of the most recent iterations of
courses that included at least one FEM module
(MSE 206 Spring 2015, MSE 406 Fall 2016,
and MSE 440 Fall 2016). Although the results
from MSE 440 do not differ significantly
from those of the other courses (p > 0.10),
the small size of the class (N = 12)
may have prevented a clear statistical trend.
Nonetheless, students’ sense of proficiency
in FEM increases dramatically between
MSE 206 and MSE 406, both large enrollment
core courses, with the mean rating lowering
from 4.07± 1.30 to 2.89± 1.31 (p < 10−5).

Flexible scheduling of the required junior-level
courses (MSE 401, 402, and 406), potential
selection bias in semi-required, specialized
courses (MSE 304 and MSE 440), and the
small size of and graduate student enrollment in more advanced courses (MSE 440 and MSE
498/404) all make it difficult to draw further comparisons of students’ perception of competency
with specific computational methods as they progress through the undergraduate program.



5.3. Efficacy of Capstone Computational Lab

To measure how the capstone Integrated Computational Materials Science and Engineering
courses (formerly MSE 498; now MSE 404 MICRO and MSE 404 MACRO) affect students’
attitudes toward computation, enrolled students were surveyed at the beginning and end of each
half-semester course. Two questions, again rated on a 5-point Likert scale, queried information
similar to what is discussed in the previous section:

• Entrance Survey: How confident are you in using the following computational tools?
(Very Confident — 1 2 3 4 5 — Not at all confident)

• Exit Survey: How confident do you feel in your ability to go out and independently use the
software packages we have worked with?
(Very Confident — 1 2 3 4 5 — Not at all confident)

Figure 4 plots the distribution of responses in MSE 404 MICRO and MSE 404 MACRO in Fall
2016. As summarized in Table 5, two-tailed t-tests demonstrate that students’ perception of
competency in each computational method rises significantly after each course.
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Figure 4: Students’ perception of competency with density functional theory and molecular dy-
namics (left) and the finite element method and calculation of phase diagrams (right) upon entering
and exiting MSE 404 MICRO and MACRO, respectively, in Fall 2016. The sample sizes ranged
from 12 to 20.

6. Conclusions

Since the inception of the computational curriculum, students have consistently believed that
computational skills are very important for their future careers. Accordingly, they have a strong



MSE 404 MICRO MSE 404 MACRO

Mean Rating p-value
End 2.27± 0.68
Start, DFT 4.50± 0.97 < 10−5

Start, MD 3.85± 1.28 5× 10−5

Mean Rating p-value
End 2.00± 0.58
Start, FEM 3.68± 1.17 3.8× 10−4

Start, CALPHAD 3.92± 0.86 < 10−5

Table 5: Summary of Likert scale results from surveying MSE 404 students’ confidence in using
computational tools. The p-value listed for each entrance question is calculated relative to the
corresponding exit question.

appetite for learning such computational skills early in the undergraduate program and in the
absence of prior computational curriculum. As students experience more of the computational
curriculum, their desire to learn computational skills lowers, demonstrating that the
computational curriculum is starting to satisfy their interest in computation.

Moreover, students report a significantly higher perception of computational competency after
completing two courses incorporating a particular computational method than after one. On
average, students still felt “Uncomfortable” applying FEM after completing one FEM module,
but felt slightly more comfortable than “Neutral” after completing three FEM modules. From
this, we conclude that repetition and progressing complexity of computational material is
essential to student learning and to the success of the computational curriculum.

Finally, students taking the capstone Integrated Computational Materials Science and Engineering
course report increased confidence in computational ability across all methods covered in the
course. Therefore, a dedicated computational laboratory course is extremely effective in
providing comprehensive computational training.
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