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Abstract— We present an algorithm for variance-reduced
Monte Carlo estimates of the expected cost-to-go used in the
stochastic model predictive control of Markov jump processes.
Specifically, we extend previous work on antithetic stochastic
simulation of Markov chains with a finite number of reaction
classes to the approximate computation of an expected cost
function of a controlled process. In the presence of strict
constraints on number of available Monte Carlo samples, we
demonstrate significant reduction in the number of Monte Carlo
simulations required to achieve a particular cost, including
a factor of two reduction in the small resource limit, for a
simplified, nonlinear chemical reaction model.

I. INTRODUCTION

Model predictive control (MPC) is an intuitive framework
that is well suited for control of complex, large-scale systems
under hard control constraints [14]. Of particular interest
is the application of MPC to uncertain systems, where
the use of feedback is essential. Within this large class,
which includes robust MPC, we focus on stochastic MPC,
which is usually characterized by a combination of stochastic
dynamics (possibly characterized by stochastic noise) and/or
probabilistic constraints [9]. Specifically, we are interested
in techniques that leverage Monte Carlo simulation (often
called scenario-based methods in this context) in service
of approximating solutions to the finite-horizon open-loop
stochastic optimization component of MPC implementation.
We leverage previous work on anticorrelated simulation of
Markov jump processes (a broad class of potentially non-
linear and non-Gaussian Markov processes on a countable
state-space) to reduce the variance of mean estimates of
the finite-horizon expected cost. The goal is to allow for
a reduced Monte Carlo budget to achieve the same or better
performance of stochastic MPC.

The two main contributions of this paper are the pre-
sentation of an algorithm for variance-reduced stochastic
model predictive control of Markov jump processes and
its demonstration on a simple, non-linear chemical reaction
network.

The use of simulation based techniques for the treatment of
stochastic MPC has been studied in many different settings
over the last fifteen years. Work on the optimal controller
synthesis problem using sampling techniques from statis-
tical learning theory [20] and subsequent refinements for
linear systems with convex constraints [4] have successfully
provided lower bounds on the sampling budget required
to satisfy probabilistic constraints. Others have tackled the
MPC problem constructed as linear systems with quadratic
constraints [2] as well as general Markov processes on
finite state spaces [15]. Approaches to solve the stochastic
optimization problems related to the more general, Bayesian

setting have employed both Markov chain Monte Carlo in
the context of simulated annealing [11] and sequential Monte
Carlo particle methods [8].

The stochastic dynamical setting we consider here is the
Markov jump process, a continuous-time, countable state-
space process that experiences transitions that can be clas-
sified by a finite number of reaction channels. This class
is a broad collection of systems, and appears commonly in
models for chemical reaction systems [18], gene regulation
systems [3], and atmospheric aerosol simulation [19].

To simulate the model, Gillespie’s stochastic simulation
algorithm (SSA) [6] is frequently used. However, when the
frequency of at least some of the reaction events is relatively
large, SSA can quickly become expensive and impractical.
In these cases, a discrete-time approximation method known
as tau-leaping (also due to Gillespie [7]) is often used. The
tau-leaping method involves simulating the system at discrete
time intervals, where the number of transitions due to each
continuous time Poisson process during that interval are
approximated by the sampling of an appropriately chosen
Poisson random variable. The convergence properties of the
tau-leaping algorithm have been rigorously proven [17] and
many variants exist, including implicit tau-leaping [16] and
adaptive stepping methods [1], [5]. For this work, we restrict
our attention to a commonly used explicit, fixed step size
approach.

Negatively correlated ensembles of sample trajectories
from such systems can be easily simulated [12], [13] in order
to produce reduced-variance (and reduced-error) estimates
of a particular expected value. In this paper, we show how
such anticorrelated ensembles can be drawn for open loop
simulations of the process during MPC to produce reduced
error estimates of the true average cost. This is in an effort
to reduce the number of Monte Carlo simulations required to
accurately estimate the expected cost of a candidate sequence
of control actions.

II. BACKGROUND

A. Markov Jump Processes and τ -leaping Simulation

We consider the class of continuous time Markov pro-
cesses evolving via a finite set of I reactions, each with a
rate function ρi(t, X(t)) that governs the frequency of its
corresponding reaction. Such systems evolve on a countable
state-space, and a useful representation of them is the random
time-change due to Kurtz [10]

X(t) = x0 +
I∑

i=1

Υi

(∫ t

0

ρi(s,X(s)) ds
)

ζi. (1)
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where, for each i, Υi ∈ R is an independent, unit-rate
Poisson process, ζi ∈ Rn is the vector change in state
due to a single occurrence of the ith reaction (i.e. ζi =
X(t+) −X(t−) if an instance of the ith reaction occurs at
t), and x0 ∈ Rn is the initial condition, which can be either
deterministic or random.

We will simulate realizations of such systems using the
tau-leaping method. Recall, the tau-leaping method approx-
imately samples the system at discrete time intervals; we
approximate the number of transitions due to each continuous
time Poisson process during that interval by simulating an
appropriately chosen Poisson random variable. In particular,
for time increment τ , let t` = `τ and X` ≈ X(t`) for ` ∈ N.
Then the evolution of X` is given by

X`+1 = X` +
I∑

i=1

Si
`(ρ

i(t`, X`)τ)ζi, (2)

where Si
`(λ) is a Poisson random variable with mean λ.

Effectively, then, tau-leaping is equivalent to a left Euler
approximation of the integral in (1). Allowing for an abuse
of notation, denote the discrete time index ` by t and we
may, for the sake of compactness, write

Xt+1 = Xt +
I∑

i=1

Si
tζ

i, (3)

where Si
t ∼ Pois(λi(t, Xt)) and λi := ρiτ .

B. Variance Reduced Stochastic Simulation

As shown in previous work [13] we can reduce the
variance of stochastic process Monte Carlo by constructing
sample paths with the exact marginal distribution of our tau-
leaping system, but that are jointly negatively correlated.
This results in unbiased and consistent mean estimators that
have lower variance than their iid counterparts, and hence
less samples are necessary to achieve the same precision
in estimates of the expected value. While there are several
different approaches to anticorrelated stochastic simulation,
we restrict our attention here to the study of antithetic
simulation and its performance relative to traditional iid
Monte Carlo. We construct antithetic paths as follows.

Recall the tau-leaping system (3) for approximate simula-
tion of Markov jump processes

Xt+1 = Xt +
I∑

i=1

Si
tζ

i.

We may simulate a sample path of this process by drawing
independent Poisson random variables at each time t and for
each reaction channel i, updating the reaction rates at each
time step. Consequently, we can produce an iid ensemble
of such paths by repeating this simulation process with
new independent Poisson samples. Alternatively, we could
simultaneously produce two correlated sample paths (with
each being an exact realization of the system in (3) with
all internal Poisson random variables being independent in t
and i), which, when jointly used in an ensemble of Monte

Carlo sample paths, would produce a reduced-variance mean
estimate.

To accomplish this, recall the definition of the quantile
function, or inverse cumulative distribution function with
parameter λ:

F−1
λ (u) := inf{n ∈ Z+ : Fλ(n) ≥ u}. (4)

Recall that the quantile function, when evaluated on a unit
uniform random variate produces a Poisson random variable
with mean λ. That is, if U ∼ Unif(0, 1), then F−1

λ (U) ∼
Pois(λ). To produce an antithetic pair of Poisson variables
{S1, S2} with parameters λ1 and λ2, respectively, define

U ∼ Unif(0, 1)

S1 := F−1
λ1

(U)

S2 := F−1
λ2

(1− U).

Since 1−U ∼ Unif(0, 1), S2 ∼ Pois(λ2) and by a standard
result [21], Cov(S1, S2) ≤ 0.

To produce an antithetic pair of sample paths
{X1,t, X2,t}Tt=0, every time a Poisson random variable
Si

t(λ
i(t, Xt)) would be simulated for the iid path, instead

simulate an antithetic pair of Poisson random variables,
{Si

1,t(λ
i(t, X1,t)), Si

2,t(λ
i(t, X2,t))} and use each of these

samples as inputs to their respective path. Thus every
Poisson sample used in a single path will be independent
of all others used in that path, but each Poisson variable
used in X1,t will be negatively correlated with a Poisson
variable used in X2,t. The resulting paths can be proven
to be negatively correlated in some cases and have been
numerically shown to dramatically decrease Monte Carlo
error in several example systems [13]. This construction is
summarized in Algorithm 1.

Algorithm 1 Antithetic τ -leaping
Initialize: Xj,0 ← xj,0

for t = 0 to T do
for i = 1 to I do

simulate antithetic Poisson pair:
{Si

1,t(λ
i(t, X1,t)), Si

2,t(λ
i(t, X2,t))}

end for
Xj,t+1 ← Xj,t +

∑I
i=1 Si

j,tζ
i, j ∈ {1, 2}

end for

III. VARIANCE REDUCED STOCHASTIC MPC

Model predictive control (MPC) is a control strategy which
seeks to approximate optimal, infinite time horizon feedback
control via optimal solution of open loop, finite time horizon
problems [14]. The control at time t takes in information
about the current state and past control actions to simulate the
cost of taking a given set of control actions over a finite time
window [t, t + H − 1]. From these simulations, an optimal
control action over this time window can be found, and the
first of these actions is implemented as the current control
action. The state information is then updated, and a new
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optimal open loop solution is found for the next window
[t + 1, t + H] and so forth.

In this context, we will focus on control of a perfectly
observed Markov process on a countable state space where
we attempt to minimize the cumulative sum of a cost function
g(x, u). Suppose we have a Markov decision process X
described by

Xt+1 = f(Xt, ut) (5)

where ut is a particular control action at time t. Suppose we
want to find an optimal policy ut = µ(xt) ∈ U such that

µ ∈ argmin
m∈F(Rn,U)

E

[ ∞∑
t=0

βtg(Xt,m(Xt))

]
, (6)

where U is some admissible set of control actions, F(Rn, U)
is the set of measurable functions from Rn to U , and
β ∈ (0, 1) is a discount factor to ensure boundedness of
the sum. This problem is of course challenging for most
Markov processes X , and often impossible to solve in closed
form. We attempt, however to find an approximate realization
of this policy along a particular trajectory by implementing
MPC. Specifically, at time t, suppose that our controlled
process Xt = xt. We will obtain

ut,H ∈ argmin
ũ∈UH

t

E

[
t+H−1∑

s=t

g(Xs, ũs)|Xt = xt

]
, (7)

where ut,H is an H-vector of control actions over the finite
horizon, and UH

t is the admissible set of such sequences
at time t, and we consider β close to 1. This optimization
problem is over a much smaller space; even naive opti-
mization strategies will suffice for small problems. We then
set our current control action to be the first element of
ut,H = (ut,H

t , . . . , ut,H
t+H−1):

ut = µMPC(xt) := ut,H
t , (8)

ignoring the rest of the finite horizon optimizer. Time can
then be updated to t + 1, and the control window shifted
to [t + 1, t + H] to solve for µMPC(xt+1). Note here that
we never solve for an approximation of the actual optimal
policy µ for every state in our countable state space. Instead
we solve for an approximation µMPC(xt) of µ(xt), i.e. the
evaluation of µ at a particular point on our controlled trajec-
tory. In other words, the algorithm approximately implements
the optimal policy rather than solving for it in a closed form.

Regardless of the optimization routine used, some ap-
proximation of the expectation in (7) will be required in
order to find a minimizing control action over the finite
horizon. Given that our selected control action will depend on
minimizing this expectation, errors in approximating it can
result in selecting a less optimal policy, producing worse
performance in the model predictive controller. Typically
this is done via a Monte Carlo ensemble of a large number
sample paths initialized at xt where we sum the cost for each
trajectory, and average these costs to accurately approximate
the expectation. For complex, noisy or large systems, this

repeated simulation can become very costly for accurate es-
timates, and often actual run-time requirements will impose
strict constraints on the available number of Monte Carlo
sample paths.

To mitigate this problem, we propose implementing anti-
correlated stochastic simulation of the finite horizon window
to produce accurate estimates of the expected cost of a
control sequence while using fewer Monte Carlo sample
paths than traditional iid Monte Carlo simulation. By simu-
lating process paths using Algorithm 1, we may immediately
improve estimates of the desired expectation, and as we will
show in the next section, this results in improved expected
cost incurred by the resulting MPC policy. Algorithm 2 sum-
marizes this approach for available Monte Carlo resources of
N sample paths.

Algorithm 2 Variance Reduced MPC at time t

input: xt

for ũ ∈ UH
t do

for k = 1 to N/2 do
simulate {Xk

1,s, X
k
2,s} for

s ∈ [t, t + H − 1], Xk
j,t = xt, and u = ũ using

Algorithm 1
end for
compute sample mean:
C(ũ)← 1

N

∑N/2
k=1

∑t+H−1
s=t [g(Xk

1,s, ũs) + g(Xk
2,s, ũs)]

end for
select ut,H that minimizes C(ũ)
µMPC

t (xt)← ut,H
t

IV. NUMERICAL RESULTS

Consider the following simple, nonlinear chemical reac-
tion system:

∅ ρA→ A

A + A
ρR→ B

B
ρB→ ∅

where the reaction rates ρR and ρB are given by mass action
kinetics

ρR(x) =
1
2
κRxA(xA − 1)

ρB(x) = κBxB,

and ρA(u) = κAu is the control input. For simplicity, take
U = {uLO = 10molecules/s, uHI = 100molecules/s} to be
binary. Let the state Xt = (XA

t , XB
t )> denote the number

of particles of each species at time t. Consider the τ -leaping
simulation of this system

Xt+1 = Xt +
I∑

i=1

Si
tζ

i, (9)

5378



0 5 10 15 20 25 30
time t

0

20

40

60

80
nu

m
be

r
of

m
ol

ec
ul

es

XA
1,t XA

2,t XB
1,t XB

2,t

Fig. 1. Two anticorrelated sample paths of the chemical reaction system
with a constant input of uLO = 10 molecules/s.

where Si
t ∼ Pois(λi(Xt, ut)) and

ζ1 =
(

1
0

)
λ1(Xt, ut) = ρA(ut)τ

ζ2 =
(
−2
1

)
λ2(Xt, ut) = ρR(Xt)τ

ζ3 =
(

0
−1

)
λ3(Xt, ut) = ρB(Xt)τ. (10)

An antithetic pair of sample open loop trajectories are shown
in Figure 1 for u ≡ uLO, κA = κR = κB = 0.1 and τ =
1.0 s.

We define the cost function so that closed-loop trajectories
try to stabilize the number of molecules of species B:

g(x, u) = |xB − xref | (11)

where xref = 30 molecules. Further, we take actions to be
5 second step functions, so that a decision is made every 5
steps of simulation time. We take the length of the finite
time horizon H = 15 seconds, so that the optimization
problem is over 3 actions and thus brute force search over the
action space requires only |U3| = 8 checks. The exhaustive
search clearly scales poorly as the size of the admissible
control set or window length grow, but is used here for
simplicity. Future work would include a more sophisticated
optimization technique. An example closed-loop trajectory
computed using either 2 iid sample paths or one antithetic
pair of sample paths (i.e. N=2) is shown in Figure 2, and its
corresponding action sequence is shown in Figure 3.

Because the closed loop trajectories, policies and costs
are all stochastic, to compare the performance of iid and
antithetic MPC we must take a large ensemble of closed loop
realizations for each fixed value of N to compute the ex-
pected cost of each algorithm. Figure 4 plots a Monte Carlo
estimate of this cost (along with error bars corresponding
to the standard error of the mean, an approximation of a
single standard deviation of the average cost) using 3.84e3
samples, versus the number of Monte Carlo sample paths
to which the model predictive controller has access. While
these average cost estimates are somewhat noisy due to high
variance in cost incurred by a closed loop trajectory, we can
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Fig. 2. Two closed loop sample paths of the chemical reaction system
with access to only 2 sample paths to estimate the expected value in (7). To
estimate the expected cost of a candidate control sequence while running
MPC, iid MPC uses two iid sample paths and the antithetic MPC uses two
antithetically paired sample paths.
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Fig. 3. The implemented policies used by the closed loop paths in Fig. 2.
To estimate the expected cost of a candidate control sequence while running
MPC, iid MPC uses two iid sample paths and the antithetic MPC uses two
antithetically paired sample paths.

see marked improvement in the antithetic MPC, achieving
roughly the same cost using only 2 Monte Carlo samples as
the iid MPC achieves using 4 samples. Note that since both
the iid and antithetic estimates of the expectation in (7) are
consistent [12], the expected cost incurred by each should
converge as the ensemble resources N become large.

V. CONCLUSIONS

In this paper, we proposed a new algorithm for model
predictive control of Markov jump processes using variance-
reduced trajectory sampling. We showed how this anticor-
related stochastic simulation algorithm could be useful to
reduce the Monte Carlo budget of estimating the expected
cost of a candidate control sequence. Further, we demon-
strated a factor of 2 reduction in the number of Monte Carlo
paths necessary to achieve the same closed loop cost in the
resource-poor limit for a simple, non-linear, non-Gaussian
chemical reaction system, though only modest improvement
in the average cost of the closed loop controller for fixed
Monte Carlo resources. More computation is necessary to
numerically explore if the antithetic MPC scheme will out-
perform iid simulation for a greater range of online ensemble
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Fig. 4. The estimated expected closed loop cost incurred by iid MPC
and antithetic MPC versus the number of Monte Carlo samples to which
they have access for online estimation of expected cost. Average costs
are computed using 38,400 sample closed loop paths. Note the antithetic
technique requires approximately half the ensemble resources to achieve
the same average cost. The error bars show +/- standard error of the mean,
which is approximately one standard deviation of the sample average cost.

resources N , and analytical study of their properties will be
sought to prove this improvement result for all N . In future
work, we hope to characterize the properties of the system
that govern how much improvement antithetic simulation
will provide, and we also hope to incorporate probabilistic
constraints.
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