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Abstract
Wepropose an algorithm to reduce the variance ofMonte Carlo simulation for the class
of countable-state, continuous-timeMarkov chains, or latticeCTMCs. This broad class
of systems includes all processes that can be represented using a random-time-change
representation, in particular reaction networks. Numerical studies demonstrate order-
of-magnitude reduction in MSE for Monte Carlo mean estimates using our approach
for both linear and nonlinear systems. The algorithm works by simulating pairs of
negatively correlated, identically distributed sample trajectories of the stochastic pro-
cess and using them to produce variance-reduced, unbiased Monte Carlo estimates,
effectively generalizing the method of antithetic variates into the domain of stochastic
processes. We define a method to simulate anticorrelated, unit-rate Poisson process
paths. We then show how these antithetic Poisson process pairs can be used as the
input for random time-change representations of any lattice CTMC, in order to pro-
duce anticorrelated trajectories of the desired process. We present three numerical
parameter studies. The first examines the algorithm’s performance for the unit-rate
Poisson process, and the next two demonstrate the effectiveness of the algorithm in
simulating reaction network systems: a gene expression system with affine rate func-
tions and an aerosol particle coagulation system with nonlinear rates. We also prove
exact, analytical expressions for the time-resolved and integrated covariance between
our antithetic Poisson processes for one technique.
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1 Introduction

The aim of this work is to reduce the computational cost of Monte Carlo simulation
of discrete-space, continuous-time Markov chains (lattice CTMCs). Such systems are
significant in the stochastic simulation literature, with applications including aerosol
modeling (Riemer et al. 2009) and HIV infection (Banks et al. 2012). They are partic-
ularly useful when the number of particles of a population is small and are thus poorly
approximated by large-concentration ODE limits. While a few ad hoc techniques
were devised to simulate such systems, the first generalized algorithm was proposed
by Gillespie (1976) with the stochastic simulation algorithm (SSA). In the interim,
both as computational resources have grown exponentially and the inherent stochas-
ticity of many systems has become better understood (McAdams and Arkin 1997),
such methods have seen increased utility and development. A more comprehensive
survey of the major techniques used for the stochastic simulation of such systems was
given by Gillespie et al. (2013). As increasingly complex models are developed, the
cost of Monte Carlo simulation for their study can become prohibitive. To address this
issue, we seek an algorithm to reduce the variance of unbiasedMonte Carlo estimates,
increasing their accuracy for a fixed or reduced number of sample trajectories.

We achieve this goal by defining an algorithm that simulates stochastic trajectories
of such systems that are both exact and identically distributed yet are alsomutually neg-
atively correlated. We observe order-of-magnitude reduction in the mean-square error
(MSE) of mean estimators constructed using these sample paths in numerical experi-
ments. The key idea of the algorithm is that lattice CTMCs can be expressed in terms
of random-time-changes of unit-rate Poisson processes. We have defined an algorithm
for simulating negatively correlated pairs of Poisson processes while preserving their
marginal distributions. These anticorrelated Poisson process pairs can then be used as
random input into random time-change representations of lattice CTMCs to produce
negatively correlated sample paths of the lattice CTMC itself. These anticorrelated
sample paths can then be used to construct unbiased, reduced-variance Monte Carlo
mean estimates of the lattice CTMC distribution. This is effectively a version of the
classicalmethod of antithetic variates (Robert andCasella 2004), extended to the realm
of continuous-time stochastic processes. In the paper, we define a simple algorithm to
simulate anticorrelated Poisson processes, which we refer to as the endpoint method,
and use it to motivate a more general algorithm, the binomial midpoint method, that
admits the endpoint method as a special case.

The random-time-change (RTC or Kurtz) representation (Ethier and Kurtz 1986)
of a lattice CTMC expresses the process as a linear combination of unit-rate Poisson
processes, each run at different time-rates determined by the rate functions and current
state of the process. Consider a state vector X(t) ∈ Z

D , t ∈ [0, T ]. If the process has I
event channels, each with propensity function ai (t, x), its RTC representation is given
by
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X(t) = x0 +
I∑

i=1

Y i

⎛

⎝
t∫

0

ai (s, X(s)) ds

⎞

⎠ νi . (1)

Here, {Y i }Ii=1 are independent, unit-rate Poisson processes and νi ∈ Z
D , i = 1, . . . , I ,

are the state jump vectors. That is, νi = X(t+)−X(t−) if the i th event channel experi-
ences a transition at time t . This formulation is increasingly well known in the systems
biology literature (Wilkinson 2011). The RTC representation can be extended to rep-
resent any discrete-state, continuous-time Markov jump process (Anderson and Kurtz
2015). Note that the only random input to this equation are the iid, unit-rate Poisson
processes used to determine the time of system jumps. We will show how to simulate
pairs of such unit-rate Poisson processes that are significantly negatively correlated.
When these antithetic Poisson processes are input into a random-time-change repre-
sentation, we demonstrate that the resulting lattice CTMC pair has significant negative
correlation, even in nonlinear examples.

In previous work (Maginnis et al. 2016), we produced anticorrelated simulation
algorithms to reduce the cost of Monte Carlo simulation for discrete-time Markov
chains that can approximate lattice CTMCs, such as those arising from the tau-leaping
approximation of Gillespie (2001). Such approximations can reduce computational
time, but also introduce bias into the simulated distributions. The algorithm contained
here instead produces exact realizations of the lattice CTMC distribution, and Monte
Carlo mean estimators constructed using these sample paths are unbiased.

Unlike other simulation approaches for these systems that use exponential random
variables to simulate jump times, such as next-reaction methods (Gibson and Bruck
2000; Anderson 2007) or Gillespie’s SSA (Gillespie 1975, 1976), our approach sim-
ulates candidate jump times using unit-rate Poisson process path segments that first
sample the (Poisson distributed) end-state of the process segment, then simulate the
conditional (iid, uniform) jump times that occurred during the segment. Our algorithm
requires a small amount of additional random variable simulation overhead. The sim-
plest case, for example, simulates one additional random variable per Poisson process
segment of length τs, as well as additional random variates that may be simulated
during the final step but not used in the final trajectory. In most practical situations,
the number of random variates simulated will lie somewhere below SSA but above
next-reaction. The length τs can be increased or decreased for reaction channels that
evolve faster or slower, respectively. These tradeoffs are discussed in more detail in
Sect. 3.

Our focus is on typical system behavior, and we invoke no measure changes as
in well-known variance reduction techniques like importance sampling (Glynn and
Iglehart 1989) or restarting (Villen-Altamirano 2012). In this work, we do not address
systems that include time delays (Bratsun et al. 2005; Cai 2007; Anderson 2007).
Further, we do not directly address issues arising from time-scale separation between
reaction channels, which is studied, for example, in (Cao et al. 2005). In the context of
sensitivity estimation, variance reduction approaches for stochastic simulation include
common reaction path methods (Rathinam et al. 2010) and finite-differencing (Ander-
son 2012). Multi-level Monte Carlo methods (Giles 2008) have been extended to and
studied for this class of processes (Anderson and Higham 2012). We believe that sev-
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eral of these techniques are in some sense “orthogonal” to our methods, and would be
compatible for use in combination with our techniques, though we leave that work for
future exploration.

This paper is organized as follows. In Sect. 2, we define an initial, simple algo-
rithm to simulate antithetic pairs of unit-rate Poisson processes we refer to as the
endpoint method. We then present the generalized algorithm, which we call the bino-
mial midpoint method, that further enhances the negative correlation between paths
and subsumes the endpoint method as a special case. In Sect. 2.3, we prove several
analytical results that characterize the behavior and correlation of such sample paths.
Next, in Sect. 2.4, we provide supporting numerical studies that both confirm the
analytical results and examine Monte Carlo MSE behavior of estimators constructed
using the paths over a range of parameter values. Finally, in Sect. 3, we show how
these anticorrelated Poisson processes can be used as inputs to simulation of lattice
CTMCs, in order to produce negatively correlated trajectory pairs of any system in this
class. We present two example stochastic systems, a simple, linear gene expression
model and a nonlinear aerosol coagulation model and numerically demonstrate the
error vs cost relationship of the algorithms.

2 Anticorrelated Unit-Rate Poisson Processes

We begin with the problem of simulating antithetic pairs of unit-rate Poisson pro-
cesses. We will proceed by introducing two algorithms to achieve this goal, with the
first motivating the more general second. We provide some theoretical and numerical
analysis of their behavior and performance. In Sect. 3, we will apply these algorithms
to the problem of simulating lattice CTMCs.

2.1 Endpoint Method for Simulating Antithetic Poisson Processes

The inspiration for the algorithmwehave created to simulate antithetic Poisson process
paths is the classical technique to sample antithetic pairs of scalar random variables.
This generates two Poisson-distributed random samples (X1, X2) with

X1 := F−1
τ (U )

X2 := F−1
τ (1 −U ),

where U ∼ Unif[0, 1] is a uniform random variable and F−1
τ is the formal inverse

of the Poisson CDF with parameter τ . It is easy to show that Cov (X1, X2) ≤ 0 for
all τ (Maginnis et al. 2016). We note here that the focus of this paper is on reducing
the variance of mean estimates. This choice is intimately linked with our choice of
one-to-one operator on the unit interval, g(u) = 1−u, which is optimal for producing
negative correlation between two variates (Whitt 1976). Indeed, for estimators of other
statistics, say, for example, E[X2], this choice of operator may actually be variance
increasing. In that case, an alternate sampling operator may be desirable, such as
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g(u) =
{
1/2 − u 0 ≤ u ≤ 1/2

3/2 − u 1/2 < u ≤ 1
.

While wewill restrict our focus in the sequel to g(u) = 1−u and to variance reduction
of mean estimators, we encourage the reader to reference the excellent article by
Whitt (1976) for further discussion of this topic. We will denote an antithetic draw

from this distribution by (X1, X2)
anti∼ Pois(τ ). Recall that the distribution of the

increment N (s, t) of a unit-rate Poisson process Y over an interval [s, t] is given
by N (s, t) := Y (t) − Y (s) ∼ Pois(t − s), and is independent of increments of the
same Poisson process over other, disjoint intervals. Further, recall that its arrival times
conditioned on its value at the endpoints of any interval are uniformly distributed
throughout that interval.

The first approach, the endpoint technique, produces an antithetic pair of Pois-
son process paths (Y 1,Y 2) over an interval [0, τf ]. One way to specify a pair of
continuous-time Poisson process trajectories is to simulate the sequences

(A1
τf

,A2
τf

)

of their arrival times. We achieve this as follows. For some step-increment τs >

0, sample
(
Y 1(τs),Y 2(τs)

) = (
N 1
E(0, τs), N 2

E(0, τs)
) anti∼ Pois(τs), the state of

the pair of Poisson processes at time τs as an antithetic pair of Poisson random
variables. Here, we denote the increments of process Y j constructed using the
endpoint technique from time s to time t with N j

E(s, t). Then, we can sample
the state of the processes at time 2τs by sampling the next process increment as

an independent antithetic pair,
(
N 1
E(τs, 2τs), N 2

E(τs, 2τs)
) anti∼ Pois(τs), and setting

Y i (2τs) = Ni
E(0, τs) + Ni

E(τs, 2τs). We may proceed until we have the sampled
values {Y i (τs),Y i (2τs), . . . ,Y i ((N + 1)τs)}2i=1 of the state of the antithetic pair of
paths evaluated at multiples of τs, where N := �τf/τs� is the total number of full
steps. We can then finish simulating the paths by sampling the jump times, which
are iid uniform random variables. That is, within each interval (nτs, (n + 1)τs], we
know that Ni

E(nτs, (n + 1)τs) jumps occurred, and that each jump is uniformly

distributed over the interval. More formally, t ij,n
i.i.d.∼ Unif(nτs, (n + 1)τs) for

j = 1, . . . , Ni
E(nτs, (n + 1)τs) and for n = 0, . . . , N . Finally, we re-index the jump

times in j such that they are sorted in increasing order and we discard any arrival times
that lie outside [0, τf ]. The endpoint technique is summarized in Algorithm 1.

While the anticorrelation is only injected at sample points {τs, 2τs, . . .} and jump
times are simulated iid, we will show in 2.3 that negative correlation is felt throughout
the time domain of the process, not just at the antithetic sample points.

Though a more complete and precise analysis is provided in Sect. 2.3, we attempt
here to provide some intuition regarding the performance and limitations of the end-
point method, in order to motivate the development of the other algorithm we will
present, in this work, the binomial midpoint method.

First, we define a useful performance metric. Since all of the mean estimators we
construct in this paper are unbiased, we define the scaled mean-square error (MSE) of
a pathwise mean estimator δ at time t to be
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Algorithm 1 Endpoint Method: Antithetic Poisson process paths via concatenation
of step size τs

Intialize: n ← 0,
(
A1

τf
,A2

τf

)
← (∅, ∅)

while nτs < τf do

Sample antithetic Poisson random variables:
(
N1
E(0, τs), N2

E(0, τs)
) anti∼ Pois(τs)

for j = 1, . . . , Ni
E(0, τs) do

Simulate iid jump times in the interval: t ij ,n
i.i.d.∼ Unif(0, τs), i ∈ {1, 2}

end for

Sort and append arrival times: Ai
τf

← Ai
τf

∪ sort

({
nτs + t ij,n

}Ni
E

j=1

)
, i ∈ {1, 2}

n ← n + 1
end while
Ai

τf
← Ai

τf
∩ [0, τf ], i ∈ {1, 2}

return
(
A1

τf
,A2

τf

)

MSE(t) := N Var (δ(t)) = N Var

(
1

N

N∑

i=1

Y i (t)

)
, (2)

where N is the number of sample paths used to produce the mean estimate. This
quantity is of interest both because it is invariant to the inclusion of additional iid
paths (or pairs of antithetic paths, as the case may be) and because it cleanly relates
to other quantities of interest. For example, for any mean estimator

δ2M (t) = 1

2M

M∑

i=1

[
Y 1,i (t) + Y 2,i (t)

]
, (3)

where the pairs (Y 1,i ,Y 2,i ) are iid in i but their elements could be correlated. Then,

MSEδ2M (t) = 2M Var

(
1

2M

M∑

i=1

[
Y 1,i (t) + Y 2,i (t)

])

= 2

M

M∑

i=1

Var

(
Y 1,i (t) + Y 2,i (t)

2

)

= 2Var (δ2(t))

= MSEδ2(t)

= Var
(
Y 1(t)

)
+ Cov

(
Y 1(t),Y 2(t)

)

= t + Cov
(
Y 1(t),Y 2(t)

)
.
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bin midpt 2
bin midpt 4
bin midpt 8

Fig. 1 The scaledMSE of 2-samplemean estimators, each produced from a pair of iid, endpoint, or binomial
midpoint antithetic Poisson process paths, all simulated for a single step of length τs = 10. For comparison,
we show binomial midpoint estimators constructed using 2, 4, and 8 sub-steps. Note that each subsequent
mean estimator dominates the previous one, meaning it has lower MSE(t) for all t

In particular, the scaledMSEat time t of amean estimator constructed fromanynumber
of iid sample paths is simply MSEδ̃M

(t) = t . For convenience, we will frequently
denote MSEδ(t) as simply MSE(t).

Aswewill prove in the sequel, amean estimator δ(t) constructed using the endpoint
method has MSE(τs) = τs + Cov

(
N 1
E(0, τs), N 2

E(0, τs)
) ≤ τs. That is, its MSE

is that of the iid estimator plus the negative covariance between the antithetically
sampled Poisson random variables with parameter τs. Note that this MSE is also
strictly greater than 0, since the Poisson distribution is not symmetric. Due to iid jump
times, MSE(t) for this mean estimate is a piecewise concave quadratic function for
t ∈ (0, τs). It is determined by MSE(0) = 0, the value of MSE(τs) (which is fixed
by the covariance between two antithetic Poisson random variables), and the fact that
d
dt MSE(t)|t=0+ = 1 (see Lemma 1). This is illustrated by the red curve in Fig. 1, for
τs = 10 over an interval [0, τf = 10].

We may further reduce the MSE over most of this interval by reducing τs, and thus,
injecting negative correlation more frequently in the interval. Compare the endpoint
MSE (red) curve in Fig. 1 (τs = 10) to the same curve in Fig. 2 (τs ≈ 2.5) to observe
this process. However, note that the gains here present a tradeoff. Indeed, we can see
that MSE(10) is increased by taking four steps instead of one. Using independent
increments of the endpoint method at τs step intervals:

MSE(4τs) = 4τs +
3∑

n=0

Cov
(
N 1
E(nτs, (n + 1)τs), N

2
E(nτs, (n + 1)τs)

)

= 4τs + 4Cov
(
N 1
E(0, τs), N

2
E(0, τs)

)

≥ 4τs + Cov
(
N 1
E(0, 4τs), N

2
E(0, 4τs)

)
, (4)
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endpt
bin midpt 4

Fig. 2 The scaled MSE of iid, endpoint and binomial midpoint 2-sample mean estimators. Endpoint tech-
nique uses τs ≈ 2.5. Binomial midpoint technique uses τs = 10.0 with 4 sub-steps, or sub-step size 2.5.
Note that the endpoint estimator achieves similar performance to the binomial midpoint estimator, but
accumulates slightly more MSE with each step, as shown in (4). These two antithetic estimators require an
almost identical number of random variable draws to simulate on average

since the covariance between antithetic Poisson variables is sub-linear in their param-
eter Maginnis (2011). So each time we step forward by τs, we accumulate MSE from
the previous endpoint and this accumulation exceeds the MSE at the endpoint of a
single, larger step. This difference is small at first and still reduces the overall MSE in
the interval, but as we let τs get even smaller, eventually the MSE not only becomes
significantly larger at the endpoint of the interval than before, it is also larger over the
majority of the interval, as shown in Fig. 3 (τs ≈ 0.0625). In fact, the expression we
will prove in Theorem 2 shows that as τs → 0, MSEδ(t) → MSEδ̃ (t), the MSE of
the iid estimator. So then, is there a way to reduce MSE more evenly for t ∈ (0, τs)?
The next algorithm we present does exactly that.

2.2 Binomial Midpoint Method for IncreasedVariance Reduction

As motivated above, τs is the primary parameter that governs the reduction in MSE
for antithetic simulation of unit-rate Poisson processes using these techniques. There
are limitations to what modifying τs alone can do, however. Indeed, as we illustrated,
with changing τs there is a tradeoff where near-time performance (within a fixed time
window, say) competes with long-term performance (after compounding many small
steps, say). Instead of reducing τs to improve near-time performance, we may instead
antithetically sub-sample previous times (using the conditional binomial distribution)
so that we improve local performance in much the same way that, say, halving τs
does, but without sacrificing endpoint performance. We refer to this approach as the
binomial midpoint method.

The binomial midpoint method injects more negative correlation into the Poisson
process pair by antithetically sampling values in the interior of a step after sampling
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bin midpt 16

Fig. 3 The scaled MSE of iid, endpoint and binomial midpoint 2-sample mean estimators. Endpoint tech-
nique uses τs ≈ 0.63. Binomial midpoint technique uses τs = 10.0 with 16 sub-steps, for sub-step size of
10/16 = 0.625. When the step size of the endpoint technique becomes sufficiently small, its MSE accu-
mulates rapidly. For the binomial midpoint technique, MSE(10) is not affected by the number of sub-steps
it takes in [0, 10.0]. These two antithetic estimators require an almost identical number of random variable
draws to simulate on average

its endpoint. Here, we exploit the fact that, conditioned on past and future values, the
Poisson process has binomial distribution. First, we may simulate

(
Y 1(τs),Y 2(τs)

)
,

exactly as in the endpoint method using antithetic Poisson sampling. But then, instead
of merely sampling the iid jump times over [0, τs] as in the endpoint method, we
first conditionally sample additional antithetic values of the process at interior time
points. For example,

(
Y 1(τs/2),Y 2(τs/2)

)
, which, conditioned on

(
Y 1(τs),Y 2(τs)

)

are binomially distributed, i.e., Y i (τs/2)|Y i (τs) ∼ Bin
(
Y i (τs), 1/2

)
for i = 1, 2,

may be sampled antithetically by inverting their respective binomial CDFs. Note that
this antithetic pair will no longer have identical conditional CDFs, since, for a particu-
lar pair of trajectories Y 1(τs) �= Y 2(τs). But we can still introduce additional negative
correlation at this point since both distribution functions are still non-decreasing. And,
importantly, we have not increased MSE(τs) since it has already been sampled. We
find it best in practice to sub-sample at time points that bisect the interval formed by
times where the Poisson process has already been sampled, since the binomial param-
eter p = 1/2 symmetrizes the binomial CDF, enhancing the efficacy of antithetic
sampling. Other choices of sub-intervals are permissible, however, and it is possible
that in some applications, sub-sampling on asymmetric intervals may be desirable.
Thus, additional negative correlation can be introduced at subsequent dyadic intervals
by conditioning on the nearest previous and future values that have already been
sampled. For instance Ni (3τs/4) := (

Y i (3τs/4) − Y i (τs/2)
) |Y i (τs/2),Y i (τs) ∼

Bin
(
Y i (τs) − Y i (τs/2), 1/2

)
for i = 1, 2. For the sake of compactness, we denote

the conditional sub-increment of process Y i from time s to time (s + t)/2 (i.e., from
the beginning of the interval [s, t] to its midpoint) as
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Qi (s, t) :=
(
Y i ((s + t)/2) − Y i (s)

)
|Y i (s),Y i (t), (5)

where Qi (s, t) ∼ Bin
(
Y i (t) − Y i (s), 1/2

)
. The binomial midpoint technique is sum-

marized in Algorithm 2.

Algorithm 2 Binomial Midpoint Method: Conditional sub-sampling in τs-increment
on 2L dyadic points

Intialize: n ← 0,
(
A1

τf
,A2

τf

)
← (∅, ∅)

while nτs < τf do
Y i
B(0) ← 0,Ai

B ← ∅, i ∈ {1, 2},
Sample antithetic Poisson random variables:

(
N1
B(0, τs), N2

B(0, τs)
) anti∼ Pois(τs)

Set state value at endpoint τs: Y i
B(τs) ← Ni

B(0, τs), i ∈ {1, 2}
for � = 1 to L do

for k = 1, 3, 5, . . . , 2� − 1 do
Conditionally sample increments at midpoint as antithetic binomial variables (see Eq. (5)):

Qi
(
k−1
2� τs,

k+1
2� τs

) anti∼ Bin
(
Y i
B

(
k+1
2� τs

)
− Y i

B

(
k−1
2� τs

)
, 1
2

)
, i ∈ {1, 2}

Set state value at midpoint: Y i
B

(
k
2� τs

)
← Y i

B

(
k−1
2� τs

)
+ Qi

(
k−1
2� τs,

k+1
2� τs

)
, i ∈ {1, 2}

end for
end for
for k = 1 to 2L − 1 do

for j = 1 to Y i
B

(
k+1
2L

τs

)
− Y i

B

(
k
2L

τs

)
do

Simulate iid jump times: t ij ,k
i.i.d.∼ Unif

(
k
2L

τs,
k+1
2L

τs

)
, i ∈ {1, 2}

end for
Sort and append jump times:Ai

B ← sort
(
{nτs + t ij ,k } j

)
, i ∈ {1, 2}

end for
Ai

τf
← Ai

τf
∪ Ai

B, i ∈ {1, 2}
n ← n + 1

end while
Ai

τf
← Ai

τf
∩ [0, τf ], i ∈ {1, 2}

return
(
A1

τf
,A2

τf

)

Note that the endpoint method is merely a special case of the binomial midpoint
method. Indeed, the binomial midpoint method with no partitions between steps (i.e.,
when the order L = 0, which can be interpreted as the number of times we halve
the sub-interval length) is precisely the endpoint method. Note also that we introduce
additional cost (in the form of additional random variable samples) to achieve this
variance reduction. If we divide a particular step of length τs into 2L equal-length sub-
intervals, we require 2L −1 additional CDF inversions. As we will show in the sequel,
this cost-error tradeoff is profitable for a finite order L that depends on the operating
parameters of the system and particular simulation. Additionally, while MSE will
always be reduced by increasing L , note that this reduction decreases sharply for large
L . As a result, it should not be thought of as an asymptotic parameter that drives MSE
toward zero for large values and fixed τs. Indeed, note that as τs/2L becomes small, the
first parameter of the corresponding binomial distributions will also be small, since

123



Exact Variance-Reduced Simulation of Lattice Continuous-Time...

the expected change in the process will be small over this sub-interval. This limits
the impact of antithetic sampling. In this case, the corresponding reduction in MSE
is small, and it would have been more efficient to partition into 2L−1 sub-intervals
instead, incurring roughly half the computational cost. So L is best thought of as a
finite parameter that has significant benefit for small values and saturates quickly for
large values. This saturation point will largely be determined by the quantity τs/2L .

2.3 Analysis of Antithetic Poisson Processes in the Endpoint Case

We now provide some analysis of the antithetic algorithm above. In this section,
we present two useful metrics to quantify the expected error from mean estimators
constructed using the algorithms: the scaled mean-square error and the integrated
scaled mean-square error. Next, we define a special function related to the antithetic
simulation of Poisson random variables that will help us analyze the behavior of
antithetically simulated Poisson random processes. Finally, we present several results
that explicitly and exactly quantify the scaledMSEand integrated scaledMSEbehavior
of antithetic endpoint Poisson process simulation, which in particular we then use to
obtain asymptotic performance bounds.

Let
(
Ỹ 1, Ỹ 1

)
denote a pair of iid, unit-ratePoissonprocess, so thatCov

(
Ỹ 1(t), Ỹ 2(t)

)

= 0 for all t ≥ 0. Let
(
Y 1,Y 2

)
denote the antithetic, unit-rate Poisson processes con-

structed using Algorithm 1 above, so that Y 1 and Y 2 are correlated (indeed, we will
show that Cov

(
Y 1(t),Y 2(t)

) ≤ 0 for all t ≥ 0). Let δ̃(t) and δ(t) denote the 2-sample
mean estimators obtained by averaging the iid and endpoint Poisson process pairs,
respectively. For brevity, we will refer to mean estimators by the method used to sim-
ulate their constituent sample paths (e.g., iid estimator, endpoint estimator, binomial
midpoint estimator). Recall the scaled MSE defined in Eq. (2) given by

MSE(t) := N Var (δ(t)) = N Var

(
1

N

N∑

i=1

Y i (t)

)
,

where N is the number of sample paths used to construct the mean estimate.
Note that, as with any Monte Carlo scheme, we may produce more accurate mean

estimates by increasing the number of samples used to construct the estimator. Prac-
titioners can simulate a sequence of many antithetic pairs which are iid with respect
to each other (each with 2 correlated components, of course) to create mean estimates
of sufficient accuracy for their particular application. This decrease in variance will
scale in the usual way (1/N , or 1/

√
N w.r.t. the standard deviation), so we restrict

our analyses to mean estimates constructed from a single antithetic pair of random
paths. Further, all comparisons are made to iid mean estimates constructed using two
independent sample paths.

Recall that (X1, X2)
anti∼ Pois(τ ) denotes the anticorrelated scalar Poisson variable

pair, i.e.,
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Γ(τ) = −Cov(X1, X2)

f(τ) = τ

g(τ) = τ2

Fig. 4 The special function �(τ) = −Cov (X1, X2) (where (X1, X2)
anti∼ Pois(τ )) plotted versus Poisson

parameter τ . For reference, we also show the simple functions f (τ ) = τ and g(τ ) = τ2. Note that
0 ≤ �(τ) < τ for all τ and, for τ < ln 2, �(τ) = τ2

X1 := F−1
τ (U )

X2 := F−1
τ (1 −U ),

where U ∼ Unif[0, 1] is a uniform random variable and F−1
τ is the formal inverse

of the Poisson CDF with parameter τ . For such an antithetic pair, define the special
function

�(τ) := −Cov (X1, X2) = τ 2 −
∫ 1

u=0
F−1

τ (u)F−1
τ (1 − u) du ≥ 0, (6)

the negative covariance of a pair of antithetically sampled Poisson scalar random
variables. This functionwill appear frequently in the analysis of the variance properties
of antithetically simulated Poisson process paths. It has several useful properties.
In particular, note that �(τ) ≤ τ = Var (X1) by definition and �(τ) ≥ 0 for all
τ (Maginnis et al. 2016). Note that �(τ) = τ 2 for all τ < ln 2 (Maginnis 2011).
These relationships, as well as � itself, are shown in Fig. 4. The scaledMSE of a mean

estimator constructed from (X1, X2) is related to � by MSE = 2Var
(
X1+X2

2

)
=

Var (X1) − �(τ) = τ − �(τ). This quantity is plotted in Fig. 5.
We proceed by exactly characterizing the variance properties of a mean estima-

tor constructed from two antithetic sample paths (Y 1,Y 2) of the unit-rate, Poisson
process simulated using the endpoint technique defined above. First, we provide an
expression for the variance of the estimator at every time, and then, we motivate and
provide an expression for a more useful quantity, the integral of the estimator variance
over a fixed time window [0, τf ]. We begin with a lemma that characterizes how the
covariance between two correlated Poisson processes propagates from points of direct
anticorrelation to times where direct anticorrelation is not applied.
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Fig. 5 Scaled MSE of a mean estimate constructed using two Poisson random variables, sampled either
using iid or antithetic sampling, plotted versus Poisson parameter τ . Note that this variance remains bounded
below by a small positive constant, even for large τ . This suggests that �(τ) does not converge to τ as
τ → ∞

Lemma 1 For antithetic unit-rate Poisson processes Y 1,Y 2, and for 0 ≤ T1 < T2,
denote by G(T1, T2) := σ

{
Y 1(T1),Y 1(T2),Y 2(T1),Y 2(T2)

}
, the sigma algebra gen-

erated by the 4 randomvariables obtained by evaluating eachprocess at each endpoint.
Then, if Y 1(t) and Y 2(t) are conditionally independent given G(T1, T2) for every
t ∈ (T1, T2), then:

Cov
(
Y 1(t),Y 2(t)

)
= Cov

(
Y 1(T1),Y

2(T1)
)

+ (t − T1)2

(T2 − T1)2
Cov

(
N 1(T1, T2), N

2(T1, T2)
)

, (7)

for every t ∈ [T1, T2], where Ni (T1, T2) := Y i (T2) − Y i (T1) is the increment of the
process.

Proof We proceed using the law of total expectation and the conditional independence
hypothesis as follows:

E

[
Y 1(t)Y 2(t)

]
= E

[
E

[
Y 1(t)Y 2(t)

∣∣∣G
]]

= E

[
E

[
Y 1(t)

∣∣∣G
]
E

[
Y 2(t)

∣∣∣G
]]

.

We may then apply the fact that, conditioned on its endpoints (information of which
is contained in the filtration G), a unit-rate Poisson process increment at time t is
binomially distributed, with number of trials Ni (T1, T2) = Y i (T2) − Y i (T1) and
probability of success (t − T1)/(T2 − T1). This fact, combined with the independent
increments property gives us
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E

[
Y 1(t)Y 2(t)

]
= E

[ (
Y 1(T1) + t − T1

T2 − T1
N 1(T1, T2)

)

·
(
Y 2(T1) + t − T1

T2 − T1
N 2(T1, T2)

) ]

= E

[
Y 1(T1)Y

2(T1)
]

+ 2T1(t − T1) + (t − T1)2

(T2 − T1)2
E

[
N 1(T1, T2)N

2(T1, T2)
]
.

Note also that

t2 = T 2
1 + 2T1(t − T1) + (t − T1)2

(T2 − T1)2
(T2 − T1)

2, (8)

so that

Cov(Y 1(t),Y 2(t)) = E

[
Y 1(t)Y 2(t)

]
− t2

= E

[
Y 1(T1)Y

2(T1)
]

− T 2
1

+ (t − T1)2

(T2 − T1)2

(
E

[
N 1(T1, T2)N

2(T1, T2)
]

− (T2 − T1)
2
)

= Cov(Y 1(T1),Y
2(T1))

+ (t − T1)2

(T2 − T1)2
Cov(N 1(T1, T2), N

2(T1, T2)),

and the claim holds. ��
Lemma 1 allows us to express the scaled MSE of an endpoint estimator with step
size τs at any time t in terms of the special function � evaluated at τs. This explicit
expression is derived in Theorem 2.

Theorem 2 For anticorrelated unit-rate Poisson processes (Y 1,Y 2), sampled using
the antithetic endpoint techniquewith step size τs, the scaledMSEof the corresponding
mean estimator is piecewise quadratic and is given exactly by:

MSE(t) = 2Var

(
Y 1(t) + Y 2(t)

2

)
= t − n�(τs) − (t − nτs)

2

τs2
�(τs), (9)

for every t ∈ [nτs, (n + 1)τs].
Proof We proceed by first noting that the covariance between the Poisson incre-
ments Cov

(
N 1(T1, T2), N 2(T1, T2)

)
present in the last term of (7) is exactly equal to

−�(T2 − T1), since
(
N 1(T1, T2), N 2(T1, T2)

)
are just antithetically sampled Poisson

random variables with parameter T2 − T1. We proceed by induction on n. First, note
that the conditions of Lemma 1 are satisfied for T1 = 0 < T2 = τs since, conditioned
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on the σ -algebra G(0, τs) = σ
{
Y 1(0) = 0,Y 2(0) = 0,Y 1(τs),Y 2(τs)

}
, the random

variables Y 1(t),Y 2(t) are independent for all t ∈ (0, τs). Thus

Cov
(
Y 1(t),Y 2(t)

)
= Cov

(
Y 1(0),Y 2(0)

)
+ t2

τs2
Cov

(
N 1(0, τs), N

2(0, τs)
)

= − t2

τs2
�(τs),

and

MSE(t) = Var
(
Y 1(t)

)
+ Cov

(
Y 1(t),Y 2(t)

)

= t − t2

τs2
�(τs)

for all t ∈ [0, τs] (i.e., n = 0).
Now, suppose that the claim holds for n − 1, namely that, for t ∈ [(n − 1)τs, nτs],

MSE(t) = 2Var

(
Y 1(t) + Y 2(t)

2

)
= t − (n − 1)�(τs) − (t − (n − 1)τs)2

τs2
�(τs),

and in particular that

Var
(
Y 1(nτs)

)
+ Cov

(
Y 1(nτs),Y

2(nτs)
)

= nτs − (n − 1)�(τs)

− (nτs − (n − 1)τs)2

τs2
�(τs)

�⇒ Cov
(
Y 1(nτs),Y

2(nτs)
)

= −(n − 1)�(τs) − (τs)
2

τs2
�(τs)

= −n�(τs).

By construction, for t ∈ (nτs, (n+1)τs), Y 1(t) and Y 2(t) are independent conditioned
onG(nτs, (n+1)τs), since all random sampling inside the interval is iid uniform, given
the endpoints. So the conditions of Lemma 1 again hold, and

Cov
(
Y 1(t),Y 2(t)

)
=Cov

(
Y 1(nτs),Y

2(nτs)
)

+ (t − nτs)
2

((n + 1)τs − nτs)2

Cov
(
N 1(nτs, (n + 1)τs), N

2(nτs, (n + 1)τs)
)

= − n�(τs) − (t − nτs)
2

τs2
�(τs),
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for all t ∈ [nτs, (n + 1)τs]. So then, for all t ∈ [nτs, (n + 1)τs],

MSE(t) = Var
(
Y 1(t)

)
+ Cov

(
Y 1(t),Y 2(t)

)

= t − n�(τs) − (t − nτs)
2

τs2
�(τs)

and the claim holds for n. ��
The expression (9) proven in Theorem 2 combined with our intuition about the

function � suggests that the larger step size τs we take, the greater variance reduction
we will observe over a long period of time. In practice, however, stochastic simulation
will often be performed over a relatively fixed finite time window, dictated by the
systemparameters or problemof interest. Reductions in estimator variance beyond that
window of interest, which we will denote by [0, τf ], are of little benefit since they will
never be observed, and in particular theymay adversely affect the performance ofmean
estimates in the window of simulation. Thus, a better metric for comparison between
techniques is the total MSE over a fixed finite time interval [0, τf ]. For simplicity, we
proceed using the L1-integral of MSE as our metric of choice.

Lemma 3 For the endpoint technique implemented with step size τs over time interval
[0, τf ], let N := �τf/τs� be the number of incremental Poisson samples (i.e., full steps)
taken in the interval. Then,

∫ τf

0
MSE(t) dt =

∫ τf

0
2 Var

(
Y 1(t) + Y 2(t)

2

)
dt

= N (N − 1)

2
τs (τs − �(τs)) + N

6
τs (3τs − 2�(τs))

+ N (τs − �(τs)) (τf − Nτs) + (τf − Nτs)
2

2
− (τf − Nτs)

3

3τ 2s
�(τs).

(10)

The proof is lengthy but straightforward and is omitted here for brevity. While this
expression is exact, it can be difficult to parse in the general case. For comparison,
note that the integrated variance of the iid mean estimator is given by

∫ τf

0
MSEδ̃ (t) dt =

∫ τf

0
2 Var

(
Ỹ 1(t) + Ỹ 2(t)

2

)
dt =

∫ τf

0
t dt = 1

2
τ 2f . (11)

As will be shown in Fig. 7, we can see that the integrated MSE of the endpoint
estimator is always less than the same quantity for the iid mean estimator. Two simple
extremal cases are also illustrative. Consider the case when τs > τf , i.e., when less
than one step is used for simulation. In this case, N = 0 and (10) reduces to

∫ τf

0
MSE(t) dt = 1

2
τ 2f − �(τs)

3τ 2s
τ 3f . (12)
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For fixed τf , as τs → ∞, the performance of the antithetic estimator will degrade back
to the iid estimator, since �(τs) ≤ τs. Alternatively, for fixed τf , when τs → 0, i.e.,
many Poisson steps are being taken during the course of a simulation, 0 ≤ τf −Nτs ≤
τs → 0 and �(τs) = τ 2s . Thus (10) becomes

∫ τf

0
MSE(t) dt ≈ 1

2
τ 2f (1 − τs) − 1

2
τfτs + O(τ 2s ), (13)

and performance again degrades to the iid case. This suggests that the best performing
τs is one that is neither too large nor too small relative to the window of interest, a
claim that is further supported by the numerical results in Sect. 2.4.

2.4 Numerical Results for Antithetic Poisson Processes

We now support the analytical results of the previous section with numerical experi-
ments. In particular, we are interested in examining the relationship between the choice
of Poisson simulation step time τs and the integrated scaledMSE over the timewindow
[0, τf ]. Note here that even though we find it helpful to parameterize the algorithms by
Poisson step size τs, this is not the finest increment in the processes produced. Those
are the inter-arrival times of the Poisson processes. However, these are stochastic and
not suitable as parameters for our approach. As a result, we will consider cases where
the Poisson step size τs is larger than the time window endpoint τf for the sake of
completeness.

For each of the Poisson process simulation algorithms, iid and binomial midpoint, a
pair of unit-rate Poisson processes is simulated from t = 0 to τf using a step size of τs,
and averaged to produce a single, 2-sample mean estimate of the Poisson process. For
illustrative purposes, we will continue to identify the endpoint case separately from
the binomial midpoint algorithm when L > 0, but recall that it is simply a binomial
midpoint algorithm with L = 0. This sampling is repeated to form an ensemble of
such mean estimators, and the ensemble is then used to construct an estimate of the
integratedMSE for each algorithm. This process is repeated for a wide range of τs, and
the results are plotted as follows. First, we examine the endpoint mean estimator in
order to verify both the exact analytical expression proven in (10) and the asymptotic
bounds given by (13) and (12). The results are collected in Fig. 6. Next, we compare
the performance of each of the proposed algorithms with each other and examine how
they vary with τs for fixed τf . These results are collected in Fig. 7.

It is important to note here that the operating points of each of these methods and
values of τs correspond to different computational costs, which we will define in this
work as the expected number of random variable draws required to simulate a path.
For example, suppose we are simulating unit-rate Poisson processes over the interval
[0, τf ] using the endpoint method (L = 0) with step size τs. On average, we will draw
roughly τf/τs antithetic pairs of Poisson random variables for each step we take in
the interval. Then, we will sample approximately τf random uniform jump times to
simulate a path. The details of these costs are sensitive to the many optimizations that
are possible for a particular implementation of continuous-time antithetic stochastic
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Fig. 6 Exact analytical solution for the integrated scaled MSE of the endpoint estimator (10) versus step
size τs, compared to empirical observation of the same. The right lower bound is defined in (12), and the
left lower bound is given by (13). Empirical results obtained using Monte Carlo simulation using ensemble
sizes of 1440000 samples or more. Error bars are very small and are thus omitted
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Fig. 7 Integrated scaled variance versus step size τs for mean estimators produced using iid, endpoint and
binomial midpoint simulation. Results obtained using Monte Carlo simulation using ensemble sizes of
360,000 samples or more. Error bars are very small and are thus omitted

simulation. For the purpose of this work, we focus on a crude implementation: steps
of length τs are taken until the final time τf is strictly exceeded. For each step taken,
every corresponding uniform jump time is simulated, including those lying outside
[0, τf ]. Thus, wewill tend to incur significant overhead relative toMSE reductionwhen
τs � τf or when τs � τf compared to existing methods such as SSA or next-reaction.

For this particular implementation, we thus estimate the number of random draws
necessary for an antitheticmethodwith order L using the expression2L (�τf/τs� ∨ 1)+
�τf/τs�τs ∨ τs, where ∨ denotes the maximum operator. The lower limit for this cost
is τf , achieved, for example, using various next-reaction methods (Gibson and Bruck
2000), so we will use this as our baseline for comparison.We will restrict our attention
to τs values that lie in the Pareto front, the region of values for which error and cost
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Fig. 8 Integrated scaled variance (error) and estimated number of random draws (cost), each plotted versus
step size τs for a mean estimator produced using endpoint simulation. The τs values shown in blue are
the Pareto front: the set of values for which error (integrated MSE) and cost (expected number of random
draws) cannot be simultaneously improved. The Pareto region was estimated numerically by sampling τs
values and selecting those values which were Pareto optimal with respect to the sampled set. In this case,
the Pareto front is composed of two points. Results obtained using Monte Carlo simulation using ensemble
sizes of 360,000 samples or more. Error bars are very small and are thus omitted

cannot be simultaneously improved. The Pareto region was estimated numerically by
sampling τs values and selecting those values which were Pareto optimal with respect
to the sampled set. To illustrate this region, consider Fig. 8, where we plot the MSE
results for the antithetic endpoint method that appear in Fig. 7 along with the estimated
cost of simulation versus τs.

Restricting our attention only to Pareto values of τs, we may plot the error vs cost
as shown in Fig. 9. As discussed above, the antithetic endpoint (L = 0) or binomial
midpoint (L = 1, 2, 3) methods can offer significant performance improvement at
relatively modest cost increases. These gains saturate relative to cost for larger L
values (e.g., L = 5). Thus, we may conclude that, in practice, τs should be tuned to
the native speed of the process (relative to the timewindow τf that we are studying) and
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Fig. 9 Integrated scaled variance (error) versus estimated number of random draws (cost), for various
estimators constructed using iid, endpoint and binomial midpoint Poisson process simulation. Only points
corresponding to τs values in the Pareto region are shown. The Pareto region was estimated numerically by
sampling τs values and selecting those values which were Pareto optimal with respect to the sampled set.
The cost baseline for iid simulation is a next-reaction algorithm that simulates trajectories using no excess
random variable draws. For cost comparison, we plot the unscaled, integrated MSE for the next-reaction
estimator as the number of iid sample paths used in the N-R estimate is repeatedly doubled. Results obtained
using Monte Carlo simulation using ensemble sizes of 360,000 samples or more. Error bars are very small
and are thus omitted

that significant performance gains can be achieved using binomial midpoint sample
with moderate order L .

3 Antithetic Simulation of Lattice CTMCs

We can employ negatively correlated pairs of unit-rate Poisson processes (as simulated
using Algorithms 1 and 2 shown in Sect. 2) to simulate negatively correlated pairs of
lattice continuous-time Markov chains (CTMCs). We define this anticorrelated pair
of stochastic processes (X (1), X (2)) as follows:

X ( j)(t) = x0 +
I∑

i=1

Y i, j
(∫ t

0
ai (s, X ( j)(s)) ds

)
νi , (14)

for j ∈ {1, 2}. In other words, to simulate a pair of trajectories of a lattice CTMC
system with I reaction channels, we simulate I antithetic pairs of unit-rate Poisson
processes and assign one element of each pair to a reaction channel in each path X ( j).

Note that, to simulate these CTMCs, we use the fact that each trajectory is piecewise
constant while waiting for the next jump to occur. So for each reaction channel, we can
use the value of the reaction rate to compute the time until the next transition occurs
for that Poisson process. The smallest of these times is the one that will occur first,
so we may move each process forward until this event occurs, update the state of the
system and repeat. Thus, we can simulate a process trajectory using only the ordered
jump times A of I unit-rate Poisson processes.
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By construction, each stochastic process path is simulated using I iid, unit-rate
Poisson processes, and the exact marginal distribution of the system is preserved. The
only difference is that the pair of lattice CTMC paths are now negatively correlated,

and will produce variance-reduced mean estimates δ = X (1)+X (2)

2 . To quantify this
reduction in variance, we define the scaled stochastic process MSE to be

MSE(t) = 2 tr Var (δ(t)) . (15)

As discussed above, the scaled MSE is insensitive to the inclusion of additional anti-
correlated pairs of paths, so we need only consider estimators constructed from a
single pair of stochastic processes for the subsequent studies. As above, we use the
integrated scaled MSE to quantify estimator performance. Note that in this case, the
time over which we will integrate is the physical time t , and no longer the “internal
times” of the Poisson processes. We use the iid mean estimator as a baseline, as its
MSE does not depend on the choice of τs. In both numerical studies, we construct an
ensemble of 2-sample mean estimators each built from a single pair of system trajec-
tories simulated using either iid, endpoint or binomial midpoint simulation for a given
value of τs. We then use this ensemble to estimate the integrated MSE of each of these
estimators, and let τs vary over a large range of values to examine the dependence of
estimator MSE. In both systems, we will see that a similar relationship between MSE
and τs holds as in the Poisson process case, save that the artifact τf determining the
time window of interest is now replaced by the interaction between T , the final time
of simulation, and the reaction rates and particular trajectory of the system.

We now introduce two example systems to illustrate the performance of the anti-
correlated Monte Carlo for stochastic process paths using the RTC (1), driven by the
above algorithm for generating antithetic Poisson process pairs. The first is a gene
expression system with rates that are an affine function of the system state, and the
second is an aerosol coagulation system driven by rates that are a nonlinear function
of the system state. In both cases, the endpoint and binomial midpoint algorithms
are used to generate the unit-rate Poisson processes {(Y i,1,Y i,2)}Ii=1 that are the sole
source of random input to the models.

3.1 Gene Expression

First, we examine a linear gene expression system. The system has two components:
mRNA that is produced and decays, and a protein it produces which also decays. This
particular model appears in Briat and Khammash (2012), and its reactions are given
by

∅ kr→ mRNA

mRNA
γr→ ∅

mRNA
kp→ protein + mRNA

protein
γp→ ∅.
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Fig. 10 Integrated scaled MSE versus step size τs for mean estimators of the gene expression system
produced using iid, endpoint and binomialmidpoint simulation of unit-rate Poisson processes. The system is
simulated with volume parameter V = 100, rate parameters (kr , γr , kp, γp) = (0.01, 0.03, 0.06, 0.0066),
and initial condition X0 = [V V /2]�. MSE estimates are obtained using Monte Carlo simulation using
ensemble sizes of 360,000 samples or more. Error bars are very small and are thus omitted

The system state is a vector X ∈ Z
2 whose components represent the number of

mRNA and protein particles. We set the initial condition x0 = V · [1.0 0.5]� (where
V is a system volume scaling parameter, fixed here at V = 100) with I = 4 reaction
channels, given by:

ν1 = [1 0]� a1(X(t)) = kr V

ν2 = [−1 0]� a2(X(t)) = γr X1(t)

ν3 = [0 1]� a3(X(t)) = kpX1(t)

ν4 = [0 − 1]� a4(X(t)) = γp X2(t),

for kr , γr , kp, γp > 0, and where Xd(t) denotes the dth component of the state vec-
tor at time t . The system is simulated using the random-time-change representation (1)
run from time t = 0 to time t = T = 10. Our primary interest is the dependence of
the integrated scaled MSE for the gene expression estimator on the choice of step size
τs for the Poisson process trajectories. The results of this study are shown in Fig. 10.

Again, it is instructive to compare the different implementations on the basis of
cost (as measured by estimated number of random variable simulations). Restricting
our attention to only Pareto-optimal points, we obtain the error vs cost relationship
shown in Fig. 11.

3.2 Nonlinear Aerosol Coagulation Due to Gravitational Settling

Finally, we examine the MSE of a nonlinear lattice CTMC when we apply antithetic
simulation to its driving Poisson processes.We consider awater aerosol system subject
to gravitational settling that undergoes coagulation events as it falls. This system can
be found in Seinfeld and Pandis (2006), Chapter 13, and the underlying assumptions
and construction of the model used here are discussed in some detail in Maginnis
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Fig. 11 Integrated scaled variance (error) versus estimated number of random draws (cost), for various
estimators of the gene expression system constructed using iid, endpoint and binomial midpoint Poisson
process simulation.The cost baseline for iid simulation is a next-reaction algorithm that simulates trajectories
using no excess random variable draws. For cost comparison, we plot the unscaled, integrated MSE for
the next-reaction estimator as the number of iid sample paths used in the N-R estimate is repeatedly
doubled. The system is simulated with volume parameter V = 100, rate parameters (kr , γr , kp, γp) =
(0.01, 0.03, 0.06, 0.0066), and initial condition X0 = [V V /2]�. Only points corresponding to τs values
in the Pareto region are shown. Results obtained using Monte Carlo simulation using ensemble sizes of
360,000 samples or more. Error bars are very small and are thus omitted

et al. (2016). For the sake of brevity, we omit those details here. The system is com-
posed of large and small water particles falling in a control volume. These classes
of particles have different terminal velocities and thus may experience collisions as
they fall leading to coagulation events. We fix the velocity of the control volume to be
the same velocity as the large particles, so that small particles may enter the system
and also coagulate with large particles. The state of the system can be expressed as
X = (Ns, Ml) ∈ R

2, where Ns denotes the number of small particles and Ml is the
total mass of the large particles. For convenience, we set the mass of the small particles
to be m = 1, and the reaction channels and rates of the system are given by:

ν1 = [1 0]� a1(X(t)) = V

ν2 = [−1 1]� a2(X(t)) = αKGS
sl V X1(t)

where α = 5 · 10−4 is a proportionality constant and

KGS
sl = 1

V

(
3
√
X2(t)/V + 3

√
m

)3 (
3
√
X2(t)/V − 3

√
m

)
.

The state is initialized from X0 = V · [100, 10] and is simulated for 10s from t = 0
to T = 10. The integrated scaled MSE of the coagulation system plotted versus the
Poisson process step size τs is shown in Fig. 12.

As above, the cost-error tradeoff is visualized by restricting attention to Pareto-
optimal points and is shown in Fig. 13.
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Fig. 12 Integrated scaled MSE versus step size τs for mean estimators of the nonlinear aerosol coagulation
system produced using iid, endpoint and binomial midpoint simulation of unit-rate Poisson processes. We
take volume parameter V = 100, proportionality constant α = 5 · 10−4, and small particle mass m = 1.
Results obtained via Monte Carlo simulation using ensemble sizes of 360 000 samples or more. Error bars
are small and are thus omitted
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Fig. 13 Integrated scaled variance (error) versus estimated number of random draws (cost), for various
estimators of the nonlinear coagulation system constructed using iid, endpoint and binomial midpoint
Poisson process simulation. The cost baseline for iid simulation is a next-reaction algorithm that simulates
trajectories using no excess random variable draws. For cost comparison, we plot the unscaled, integrated
MSE for the next-reaction estimator as the number of iid sample paths used in the N-R estimate is repeatedly
doubled. We take volume parameter V = 100, proportionality constant α = 5 · 10−4, and small particle
mass m = 1. Only points corresponding to τs values in the Pareto region are shown. Results obtained using
Monte Carlo simulation using ensemble sizes of 360 000 samples or more. Error bars are small and are thus
omitted

4 Conclusions

In this paper, we introduced a new algorithm to simulate lattice CTMCs that pro-
vides order-of-magnitude speedup versus traditional iid Monte Carlo methods, while
simultaneously introducing no bias error and remaining cost-competitive.We achieved
these improvements by producing negatively correlated, identically distributed sam-
ple trajectories to produce unbiased mean estimators for both linear and nonlinear
stochastic systems.We produced these paths by first showing how antithetic, unbiased
unit-rate Poisson process paths could be simulated and used as the random input for
time-change representations of lattice CTMCs. Further, we provided both theoretical
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and numerical analysis of this Poisson process algorithm that exactly characterize its
performance and provide simple asymptotic bounds for large and small leap lengths
τs.
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