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Algorithmic grading strategies for computerized drawing assessments

1. Introduction

Introductory mechanics courses have important learning objectives focusing on students’ ability
to accurately draw or sketch particular types of diagrams, such as free body diagrams and graphs
of shear forces and bending moments in beams. To achieve mastery of these drawing skills it is
essential that students have many opportunities to practice and that they receive rapid and accurate
feedback on whether they are drawing the correct diagram for a given mechanical problem. With
the growing student enrollment in many engineering programs, however, it becomes increasingly
difficult to provide prompt and accurate grading using the traditional approach of having students
submit hand-drawn diagrams which are graded by a teaching assistant or grader. One way to
circumvent this overwhelming grading process in large classes is to adopt multiple-choice
questions. Unfortunately, assessing drawing skills using a multiple-choice instrument is mostly
limited to testing students’ interpretation of given drawings, rather than testing their ability to
construct new drawings themselves. For example, research was conducted to investigate the
validity of the use of multiple-choice questions to assess graphing abilities2. A group of students
were asked to select the graph that best represented a situation, while a second group of students
had to construct the graph that best represented the same situation. The results indicated that
students obtained lower performance when responding to multiple-choice questions and
concluded that the use of multiple-choice instruments to assess graphing abilities may be invalid.

Another appealing alternative to hand grading is the use of automated computer-based systems,
where students need to draw a diagram or graph on the computer and this can then be immediately
graded algorithmically and feedback returned. Computer-based homework systems have been
widely adopted in large introductory STEM courses in recent years5, due to benefits to both
students and instructors, such as immediate feedback, integration with online content, and reduced
grading workloads. The development of computer-based questions with automatic grading allows
instructors to implement more frequent testing in their classes. Educational research indicates that
frequent testing leads to better retention than rehearsal strategies such as rereading noted or
previously solved problems9;10, especially when immediate feedback is provided4;7 In addition to
better retention, students require repeated practice in order to achieve mastery of a given skill1.
Specifically, the construction of free-body diagrams that are helpful and accurate takes time and
practice, and for that reason the need for computer-based drawing tools is of utmost importance.

Roselli et al.11 developed an online free body diagram assistant that allows students to construct
these drawings by inserting forces and moments using the mouse, and the ability to receive
immediate feedback. Commercial online systems such as McGraw-Hill Connect6 and Pearson
MasteringEngineering8 have also developed graphing questions in which students need to draw



graphs, such as a free-body diagram, using the mouse to insert objects. Unfortunately, these
systems do not provide much feedback on the drawing features. Moreover, they mostly have one
answer implemented as the correct one, and therefore other possible variations of the correct
answer are often marked as incorrect. Another computer-based system that allows drawing of
Statics problems is Mechanix12, a hand-sketch homework system that uses sketch-recognition to
grade the drawings and gives instant feedback to the users.

The central question addressed by this paper is as follows. When receiving a computer-drawn
mechanical diagram or sketch from a student, what algorithmic procedure should be used to grade
the submission? In Section 2 we present a list of general requirements that should be satisfied by
any algorithm for grading online drawing problems, and then in Section 3 we present a specific
algorithm that we show in Section 4 satisfies the requirements. Results from implementation in a
180-student introductory mechanics course at the University of Illinois at Urbana-Champaign in
Fall 2016 as part of a wider reform13 are presented in Section 5, and Section 6 gives conclusions.

2. Functionality requirements for grading algorithms

We identify five key functionality requirements for a grading algorithm for engineering drawings.
The algorithm should:

R1. be able to provide students with meaningful feedback about errors in their diagram,

R2. be easy to understand for problem authors, and require only data which is readily available
to authors,

R3. be adaptable to different types of drawings or sketches,

R4. be fast to execute,

R5. be robust to unexpected or unusual inputs.

Requirement R1 stems from the need to support the learning goals articulated in Section 1, R2 is
needed to be practical in higher-education settings where the course content is often highly
customized by individual instructors and cannot be centrally generated, R3 permits a single
platfrom to support different engineering courses and thus leverages expertise, and R4 and R5 are
needed for practical deployment in large-enrollment university courses (200 or more students).

3. A specific grading algorithm implementation

The drawing tool developed for this study allows users to insert and manipulate objects in the
drawing space (canvas), in order to construct the solution to a given problem. Figure 1 illustrates
a typical mechanics problem, where students need to complete a free-body diagram, and draw the
corresponding shear and bending moment diagrams. For the free-body diagram, we created
objects to represent concentrated forces, distributed forces and moments; for the shear and
bending moment diagrams, we created two different sketching lines to represent linear and higher
order curves. Figure 2 depicts these available drawing objects, and the names associated with
each one of them, which are used by the grading algorithm.

The grading algorithm compares the position of objects that are placed in the canvas with respect



Figure 1: Left: example question that uses the drawing tool. Users need to complete a
free-body diagram and shear and bending moment diagrams. Right: sketch of the
solution using the drawing tool.



Figure 2: List of all possible objects and their corresponding names used internally by
the algorithm.

to the expected position of each object. The list of objects inserted in the canvas by the user are
denoted as submitted objects and the list of objects corresponding to the correct solution are
denoted as required objects. The algorithm generates the drawing space from a set of pre-defined
variables, initialized by the problem author, as illustrated in Fig. 3. These variables are used to
determine the position of the required objects.

The following steps are necessary to write the grading function for each question:

1. Create a list of required and optional objects. For the example illustrated in Fig. 1, we have:

(a) requiredObjects = [RAy,MA, wBC , VAB, VBC , VCD,MAB,MBC ,MCD]

(b) optionalObjects = [RAx]

2. Determine the following properties for all required and optional objects:

• Upper bound (yUp), lower bound (yLower), right bound (xUp) and left bound
(xLower). Note that these four properties together define the bounding boxes where
the object should lie in order to be marked as correct (purple dashed lines in Fig. 4).

• Name: identifies the name of the object. Figure 2 indicates the objects used in this
study, and their corresponding names. Sometimes a required or optional object can be
represented by more than one configuration, and therefore they should have more than
one name associated to it. For example, the vertical force at A, RAy, can be
represented by a right or left arrow in a free-body diagram (the direction is determined
only after performing numerical calculations). Therefore, RAy has names FD and FU
(or name = ["FD","FU"]).

• Feedback name: this is the string name that is used for the feedback messages

• Id: unique identifier for each object

• Found: all objects are initialized with found = false

The shear and bending moment diagram sketching tools (controlledLine and
controlledCurvedLine) have one additional property denoted slope that can be set to “zero”,
“positive” or “negative”. For example, the shear force V (x) from A to B corresponds to a
straight line with zero slope.



Figure 3: Canvas listing the pre-defined variables used to determine the position of the
required objects.



Figure 4: Example of bounding boxes that define the location of the required and
optional objects. The center of the moment MA should be located inside a square with
center at A, located at position (RodXPos,RodYPos), and side equal to grid-size. The
reaction forces RAy and RAx should be located inside the larger dashed purple lines,
allowing the arrows to start or end at point A. For the sketch of the shear force, the
controlledLine object should have zero slope and its end points must lie inside the
dashed box.

3. Run function to process grading: Loop over all submitted objects trying to find matching
required or optional objects within the tolerance described by the bounding boxes. The
pseudo-code for this function is presented in Algorithm 1. The functions to check the
tolerance will depend on the type of object. For illustration purposes, we also present the
pseudo-code for the function that checks the tolerance of free-body diagrams (Algorithm 2).

4. Evaluation of algorithm functionality requirements

To evaluate the algorithm described in Section 3, we now evaluate it against the five key
functionality requirements described in Section 2.

Requirement R1: Instant feedback. The grading algorithm provides feedback to students,
indicating when they have missing parts of the diagrams, define incorrect slopes, or use the
incorrect sketching tools. As shown in Section 5, better feedback message and algorithm
could be implemented in the future. Note from Algorithm 1 that a question is marked as
correct if all the required objects have property “found == true” and there is no extra object
inserted by the user. Optional objects are not considered extra objects. If the algorithm finds
extra objects, it gives the feedback message “Found extra object”. If the algorithm cannot
find a required object, it will give the feedback message “Object [feedbackName] was not
found”.

Requirement R2: Simple to understand for authors. The process grading function 1 was
implemented in a generic form and does not depend on the given problem. Problem authors
need to provide only data corresponding to the expected position of the required and
optional objects, which will be different for each question, and is simple to understand for
authors within the context of a given question.

Requirement R3: Adaptability to different drawing types. Because of its general framework,



Algorithm 1 Process grading function
m = number of submittedObjects
n = number of requiredObjects
for i = 1 to m do

for j = 1 to n do
if submittedObjects[i].name == requiredObjects[j].name then

if requiredObjects[j].name == “controlledLine” then
call checkToleranceControlledLines(submittedObjects[i], requiredObjects[j])
if submittedObjects[i].found = true then

break loop j
end if

end if
if requiredObjects[j].name == “controlledCurvedLine” then

call checkToleranceControlledCurvedLines(submittedObjects[i], requiredObjects[j])
if SubmittedObjects[i].found == true then

break loop j
end if

end if
if requiredObjects[j].name is one of the FBD object names then

call checkToleranceFBD(submittedObjects[i], requiredObjects[j])
if submittedObjects[i].found == true then

break loop j
end if

end if
end if

end for
end for
if requiredObjects[j].found == true for all j and submittedObjects[i].found == true for all i then

question is marked as correct
end if
for each i where submittedObjects[i].found == false do

question is marked as incorrect
print feedback message ”Found extra object.”

end for
for each j where requiredObjects[j].found == false do

question is marked as incorrect
print feedback message ”The object [feedbackName] was not found.”

end for



Algorithm 2 Check tolerance for FBD objects
function checkToleranceFBD(submittedObject, requiredObject)
if requiredObject.xLower < submittedObject.xpos < requiredObject.xUp then

if requiredObject.yLower < submittedObject.ypos < requiredObject.yUp then
submittedObject.found = true
requiredObject.found = true

end if
end if

Figure 5: Drawing tool to solve stress transformation problems. Left: given problem.
Right: solution including square rotation and arrow objects. The implementation of the
grading function for this problem used the same tolerance check used for free-body
diagrams.

the grading algorithm can be easily adapted to work on different types of drawing problems.
For example, Figure 5 shows another type of sketching problem that typically appears in
introductory solid mechanics classes, where students needed to complete the stress element
(represented by the square), by drawing arrows representing stress components.

Requirements R4 and R5: Grading processing time and robustness. The presented grading
algorithm framework is simple, fast to execute and does not require an iterative procedure.
It has complexity of order equal to O(nm), where n is the number of required objects and
m is the number of submitted objects, which could be improved to O(n) +O(m) using a
spatial-search data structure such as a quad-tree or simple grid binning. Since we are not
dealing with a large number of objects, the grading is finalized almost instantly even with
O(nm). In addition, the algorithm is robust and easily handles unexpected inputs such as
the insertion of multiple objects.



5. Results from implementation

The system described in Section 3 was implemented within the PrairieLearn14 online system and
used for both homeworks and testing-centere3;15 quizzes (frequent exams) in an introductory
mechanics course at the University of Illinois at Urbana-Champaign in Fall 2016 with 180
students. The PrairieLearn system was introduced in the same class in Fall 2015, however, the
drawing tool was not yet available and questions assessing shear and bending moment diagrams
were created using a multiple-choice format. We present results in the following sections from
three evaluation sources: (1) student interaction data with the system, (2) student affect data
reported via survey and anonymous written feedback, and (3) instructor feedback.

5.1. Student interaction data with the system

The online PrairieLearn system14 that delivered the problems to students also recorded all student
interactions with the system. To analyze these interactions, we selected a pair of homework-quiz
questions addressing the two distinct problem types of sketching shear force and bending moment
diagrams (Figs. 6-7), and drawing stress elements. Before comparing quiz and homework
performance, it is worthwhile to understand the difference in the grading scheme of these two
different assessments. When taking a homework, students are allowed to have unlimited attempts
to get a question marked as correct. Moreover, making a mistake in a given question does not
prevent them from achieving a perfect score (grading scheme discussed in West et al.14). In
addition, students can obtain a perfect score in a homework assessment without answering all
questions. However, when taking a quiz, students have their score penalized each time they get
the question marked as incorrect. The examples presented in Fig. 7 had a starting value of 10
points, and students were penalized by one point each time they answered a question incorrectly.

Summary data from student interactions with the PrairieLearn system is presented in Figure 8.
We first compared the success rate for the two problem types in homeworks, i.e., the percent of
students that had a question marked as correct (regardless of the number of attempts). The results
are indicated in Fig. 8a and indicate that students were largely successful at solving the problems
(70% and 90% success rates for the two problem types in homeworks), and the success rates were
somewhat lower on quizzes as would be expected.

The system also tracks the number of attempts that each student needs to get a question marked as
correct. Figure 8b shows the average number of attempts needed for a correct attempt, where the
average is taken only over the students that got the question marked as correct. While doing
problems on homeworks, around 5 to 6 attempts were needed on average for a student to correctly
solve the problem, indicating that they were repeating the question to learn the concept, while on
a quiz the average number of attempts for successful solutions was less than two, showing that
students had achieved mastery or near mastery.

To understand the types of errors made by students, Figs. 8c-8d show how frequently the “object
was not found” and “extra object found” errors were reported to students. The results depicted in
Fig. 8c were obtained by first calculating the rate that each student received the message “object
was not found”, which excludes all the students that never made a mistake, and then averaging
these rates over this set of students. In a similar way, the results that appear in Fig. 8d were



Figure 6: Homework question corresponding to the data collected in Fig. 8

obtained by first calculating the rate that each student received the message “extra object found”,
which again excludes all the students that never made a mistake, and then averaging these rates
over this set of students. Overall, the error rates were higher for V-M diagrams, which is
consistent with the lower success rates on these questions. The rates for the two error types were
similar and high, indicating that it might be useful to report more detailed breakdown of the
specific error cause (see also Section 5.2 for more discussion on this point).

5.2. Student perceptions survey

A survey addressing student perceptions of the drawing tools was administered after the end of
the semester using an online software where 50 students responded to the survey (28% of the
class). The results are summarized in Fig. 9.

Students agree that it is important to draw quality engineering drawings (Fig. 9-a), and indicated



Figure 7: Quiz questions corresponding to the data collected in Fig. 8



(a) (b)

(c) (d)

Figure 8: Data from student interactions with the online drawing problems. See
Section 5.1 for discussion.



that the drawing tools helped them understanding important concepts covered in class (Fig. 9-b).
Moreover, students felt that the drawing tools helped them in preparing for the quizzes (Fig. 9-c).

The survey also indicated that students were able to understand the drawing instructions (Fig. 9-d)
and that the placement of vectors (objects) in the diagrams was not difficult (Fig. 9-e). However,
many students felt that manipulating the objects inside the canvas (for example, rotating or
moving the object to the correct location) was complicated (Fig. 9-f). On another hand, the
majority of the students believed that if they knew what the correct answer should be, they could
draw the diagrams using the drawing tool (Fig. 9-g). It is not clear to the authors if the “difficulty”
in object manipulation was associated with the fact that when students didn’t know the solution of
the problem, they would just try random attempts using the drawing tool, and felt as if the
drawing itself was the frustrating part of the problem solution. Based on observation of students
during office hours, we noticed that students were spending a lot of time trying to place the
objects precisely on the canvas, even tough it was announced that the tolerances were very large.
To remediate this, we plan to include more messages about tolerances in the problem statement,
to ease the manipulation of the objects.

One of the questions asked the students if they felt the feedback message helped them figure out
the drawing mistakes on their own. The results show the class was evenly divided about the
efficacy of the feedback message (Fig. 9-h). In this first implementation of the grading algorithm,
the feedback was very simple and only pointed out missing or extra objects, or if a slope was
incorrect or not. This simplistic approach caused confusion to many students, since some of their
drawing errors would generate two messages (instead of one). Note that according to
Algorithm 1, when a student inserts a controlledLine that matches the bounding box of the
required object but has the incorrect slope, the algorithm will send a message “Found object but
slope is incorrect”, but also give another message “Found extra object”, since the submitted object
property found was still marked as false. The authors plan to work on improving the feedback
algorithm, including correcting this inconsistency, but keeping a balance of how much scaffolding
should be provided to students while maintaining a desirable difficulty level.

5.3. Instructor feedback

One of the authors was the instructor of the class when the drawing tool was first implemented in
a introductory solid mechanics course. In previous semesters, students had very high performance
when responding to questions about shear and bending moment diagrams or stress transformation
in paper-based multiple-choice exams. The performance significantly decreased when the
questions were presented during the computer-based quizzes using the drawing tools and there
were no pre-defined answers to select from. However, this same trend was not observed for other
types of questions, indicating that something was different about drawing questions. We believe
that students were able to attain high performance in the past because they were able to guess and
use partial knowledge to get the correct answer when presented with multiple-choice graphical
questions. However, when asked to actually draw the answer to the questions, it was evident that
the knowledge was lacking and students were not prepared to answer them successfully. More
effort should be placed on drawing tools to help students develop good engineering graphing
skills, and this new system does this.



Figure 9: Anonymous survey results from N = 50 students. See Section 5.2 for discussion.



6. Conclusions

In this paper we presented a set of five key requirements for grading algorithms for drawing
problems, we described and implemented a specific grading algorithm that satisfies the five
requirements, and we collected and analyzed multiple types of evaluation data from the use of the
system in an introductory mechanics course with approximately 180 students. The evaluation
results indicate that the system was able to efficiently and robustly grade student diagrams and
provide formative feedback. Future avenues of work include implementing more types of drawing
questions (e.g., state-machine diagrams, circuit-drawing problems) and making it easy to
optionally specify more precise feedback for scaffolding when students are first learning a topic.
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