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We present a methodological improvement for calculating Grade Point Averages (GPAs). Heterogeneity in

grading between courses systematically biases observed GPAs for individual students: the GPA observed

depends on course selection. We show how a logistic model can account for course selection by simulating

how every student in a sample would perform if they took all available courses, giving a new “modeled

GPA.” We then use 10 years of grade data from a large university to demonstrate that this modeled GPA

is a more accurate predictor of student performance in individual courses than the observed GPA. Using

Computer Science (CS) as an example learning analytics application, it is found that required CS courses give

significantly lower grades than average courses. This depresses the recorded GPAs of CS majors: modeled

GPAs are 0.25 points higher than those that are observed. The modeled GPA also correlates much more

closely with standardized test scores than the observed GPA: the correlation with Math ACT is 0.37 for the

modeled GPA and is 0.20 for the observed GPA. This implies that standardized test scores are much better

predictors of student performance than might otherwise be assumed.
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1 INTRODUCTION

Grades are a ubiquitous measure of academic performance in undergraduate education in the
United States. Grades are used in most high-stakes decisions in academia, reflecting the judgment
of the institution itself on students’ academic success (Cohen 2000; Rosovsky and Hartley 2002).
Minimum grades are needed to receive credit for coursework, minimum grade point averages
(GPAs) are needed to enter a major or graduate, and grades are used to determine eligibility for
scholarships and awards. A high undergraduate GPA is required to be considered for prestigious
graduate programs; a low GPA can reduce employment prospects. Grades awarded to students
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have real impacts, so it is important that they are awarded fairly and without discrimination. Fur-
ther, because GPAs are so tied to these high-stakes decisions, we must be sure that this metric
provides as accurate an estimate of a students’ ability as it can. If not, biased grading in colleges
and universities could be discouraging students from staying in challenging programs—such as
Computer Science (CS)—and related careers. Worse yet, could these biases be disproportionately
affecting traditionally underrepresented populations, such as women in CS?

Because GPAs are treated as one of our best estimators of a student’s ability level, it is essential
that we ascertain whether the GPA is as accurate as possible given students’ grade data. One
core challenge to the usefulness of the traditional GPA is that not all faculty assign grades using
the same practices, nor do they assign grades in similar distributions. For example, Science,
Technology, Engineering, and Mathematics (STEM) faculty are twice as likely to use fixed curves
than other disciplines, artificially deflating grades in these courses and the GPAs of students
who take those courses (Hurtado et al. 2012). These differences in grading practices have
contributed to persistent disparities in grades given across fields of study (Johnson 2003). A
multi-institutional study (Koester et al. 2016) has further highlighted that introductory-level
STEM and CS courses apply “GPA penalties” to students who take them (i.e., students perform
worse in these courses than their GPAs would predict). These disparities reveal that the GPA is
an inherently flawed measure, measuring the grading policies used in the courses that a student
takes in addition to that student’s ability in those courses. Consequently, academic departments
are making high-stakes decisions about students’ future careers based on a flawed number.

Students likewise make high-stakes decisions based on grades and GPA. Early grades in STEM
courses, including CS, strongly predict students’ persistence in their majors (Cromley et al. 2016).
Critically, women are disproportionately more likely to leave computer science because of low
grades in introductory computer science than their male counterparts (Katz et al. 2006), and the
negative effect of low grades is particularly amplified when students perform worse in their STEM
courses than they expect based on their non-STEM courses (Ost 2010; Rask 2010; Seymour and
Hewitt 1997; Stinebrickner and Stinebrickner 2011). As the demand for competent computing pro-
fessionals continues to rise, our efforts to increase the number of CS graduates is mired by low
retention rates, sparked in part by low grades (Strenta et al. 1994; Katz et al. 2006; Stout et al. 2011).
Consequently, we have a critical need to extract as much information as possible from students’
grade data to determine the best courses of action for improving student persistence, improving
academic advising, and giving our students every competitive advantage.

Despite its shortcomings, the GPA remains a staple of academic decision making because of
the ubiquitous and easy access to grades and the readily digestible nature of a single summative
number. We seek to maintain these affordances of the traditional GPA while improving its validity
by accounting for the disparities in grade distributions from different fields of study. In this article,
we use logistic modeling of students’ grades in courses relative to the program of study to create
a new modeled GPA that accounts for the average grade distributions of the courses that students
take. We show that the modeled grades are more accurate than the observed grades in predicting
student performance, and that the modeled GPAs more strongly correlate with standardized test
scores than observed GPAs. The primary contribution of this article is a new method that any
institution or student can use to better predict how students will perform in each course based on
their performance in other courses. This new modeled GPA could provide a powerful new tool for
enhancing future data and learning analytics that rely on students’ GPA.

To demonstrate how this new model can be applied, we explore three research questions in-
spired by the work of Koester et al. (2016): (1) Does a logistic model of GPA improve predictions of
student performance over observed GPA? (2) If we can improve estimation of students’ ability level
using a logistic model, what does this new estimator reveal about the GPA penalties that students
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experience by taking an introductory CS curriculum? (3) How is the GPA penalty against women
affected by this modeled GPA as compared to the traditional GPA? We have chosen gender as a
useful case study as it is of high interest to the community and we have sufficient data to address
the question. While we specifically explore the impact of this new modeled GPA’s effect on GPA
penalties, it could also be applied by institutions in other contexts such as in admissions decisions,
academic advising, and even in helping students find careers after graduation.

2 BACKGROUND

GPA is designed to measure academic potential, but it contains a major flaw: students increase
their apparent GPA if they choose courses that award higher-than-average grades, or decrease
it by choosing courses that award lower-than-average grades. But how can we tell if one course
awards higher or lower grades than another?

One approach is to compare the grade students receive in a particular course with their GPA.
Lower-grade courses reduce the GPA of students who take them, while higher-grade courses raise
them: the relative difficulty of individual courses is expressed as the difference between the average
grades in a course and the average GPA of students taking that course. This difference is called the
“grade point penalty” (Koester et al. 2016). If, for example, “B” students (overall GPA = 3.0) have
an average grade of B- (score equivalent to 2.67) in a given course, then that course has a grade
point penalty of 0.33. We can then use the grade point penalty to describe if a course is lower
graded or higher graded than the average course. We note that this method does not consider the
content covered in a course, let alone how much students learn—it is purely defined by recorded
grades. This definition does match a colloquial understanding of course difficulty, though: a higher-
graded course is more likely to pass a given student, and more likely to award an A, than a lower-
graded one.

We can also use the grade point penalty concept to measure if different groups of students
face different penalties for taking a course, potentially providing evidence of discrimination. If we
expect male and female students to do equally well, it would also be expected that they would
share the same grade point penalty across different courses. If they don’t have the same grade
point penalty (if, for example, women do less well in STEM courses), then this can be expressed
as a difference in the grade point penalty. As an example, if male students have an average grade
point penalty of 0.2 while female students have an average grade point penalty of 0.6 in the same
course, then the “female grade point penalty” for this course is 0.4. If this pattern is observed in
CS courses, then this could be evidence of discrimination against female students.

As described, the grade point penalty method is flawed as it uses observed course grades to
compute the GPA. This approach seems uncontroversial, and is in fact the standard method used
to determine GPAs in transcripts. But the observed GPA is itself dependent on the cumulative
grade point penalties of the courses taken by the student. So a student who takes a large number
of high-penalty courses will have an artificially depressed GPA, which will reduce the size of any
observed grade point penalty. Imagine a student who, if she took all courses at an institution,
averaged a “B”; her GPA should be 3.0. But no student takes all courses at an institution. If a “B”
student exclusively enrolled in grade-penalizing courses that have an average grade point penalty
of 0.33, she would have an observed GPA of 2.67—not 3.0, as specified. This in turn would impact
the observed grade point penalty of these lower-grade courses: this student records no grade point
penalty for taking these courses. Her observed GPA is 2.67, her average grade in these courses is
2.67, and so the apparent grade point penalty is zero—even though the actual grade point penalty
was defined as 0.33.

Furthermore, we would expect this issue with observed GPAs to be universal to all students,
regardless of program. As different majors have different curricula, which have different average
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grade point penalties, a student’s GPA is partly determined by his or her course of study. It is rare
for students in even the same program to select the same set of courses, and since every course has
its own grading penalty, every individual course also impacts a student’s observed GPA. We need a
more accurate measure of GPA than the observed GPA if a grade point penalty approach is to work.

If every student took every course, then the impact of curriculum and course choice would
disappear, as the GPA would then accurately reflect the student’s academic performance relative
to all other students in the sample. We therefore have developed a “modeled GPA” that aims to
remove course-choice effects. We use a two-parameter logistic model for student grades in courses
and use this to define the modeled GPA as the GPA that would be calculated if a student took, and
received a grade for, all courses. This corrects the systemic bias in the calculation of the GPA,
which in turn enables a more realistic calculation of the grade point penalty. This is similar to the
approach of Vanderbei et al. (2014) but differs in that they used linear models of course grades,
which can give unrealistic course-level predictions (i.e., course grades above 4 or below 0).

It should be noted that this grade point penalty approach assumes that there is a single factor that
explains a large portion of student success in any given course, regardless of discipline—history is
treated the same as economics, which is treated the same as computer science. As we will show
below, this assumption is surprisingly reasonable. Having said this, we do not expect that GPA is
the only important determinant in individual course performance. One would expect CS majors
to do better than nonmajors in CS courses, for example, as they should have greater motivation
and interest.

3 STUDENT GRADE DATA

The dataset used throughout this article consists of 1,984,111 student grade records from the Col-
lege of Engineering and the College of Liberal Arts and Sciences at the University of Illinois at
Urbana-Champaign over a period of 10 years (2006 to 2015 inclusive). These two colleges were
chosen because computer science majors reside in both of these colleges. This dataset included
64,860 students and 3,606 courses, so the students had grades from an average of 30.6 courses and
courses had an average of 550.2 students per course over this time period. We did not distinguish
between different semesters of a course or different instructors, and the dataset included only those
courses with at least 30 students and students with at least 10 courses; 3,277 of the students in the
data are CS majors—425 female (15%), 2,851 male (85%), and one unspecified.

The dataset consists of N enrollment records, where record (in ,kn ,дn ) indicates that student in
took course kn and received grade дn , for n = 1, . . . ,N . It is possible that the same student took a
given course multiple times and received either the same or different grades each time. There are
a total of I = 64,860 students and K = 3,606 courses. Grades are measured on a standard 4-point
scale, with д = 0.0 being the lowest grade (F) and д = 4.0 being the highest grade (A or A+). We
denote by Ki the number of course records for student i , so that the observed GPA is

observed-GPAi =
1

Ki

∑
n=1, ...,N

such that

in=i

дn . (1)

4 LOGISTIC GRADE MODELS

Logistic models are a special case of generalized additive models (Hastie et al. 2009). They are
widely used in statistical learning and modeling, including in psychometrics and educational
settings where they are known as item response or latent trait models (Nering and Ostini 2010).
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Predictive models of student grades have been used previously by Vanderbei et al. (2014) to esti-
mate true student aptitude and course grade inflation with two-parameter linear models.

Our two-parameter logistic model for the predicted grade д̂ik of student i in course k is

д̂ik =
4

1 + exp(−ak (θi − bk ))
, (2)

where there is one student parameter and two course parameters given by

θi = “ability” of student i (3a)

bk = “difficulty” of course k (3b)

ak = “discrimination” of course k . (3c)

The difficulty of a course is the ability level θ at which the logistic model crosses 2.0 (i.e., a grade
of C). A student with this ability level will have a 50% chance of getting a grade of C or better in
the course. The discrimination of a course indicates how strongly a course distinguishes between
students of different ability levels (higher-discrimination courses provide more information about
a student’s ability level). For a set of parameters (Equation (3)) the root mean square error (RMSE)
of the predicted grades is

e =

√√√
N∑

n=1

(дn − д̂in,kn
)2. (4)

The optimal parameters θ ∗
i
, b∗

k
, and a∗

k
are determined by minimizing the error e over all parameter

values. This can be done, for example, by an iterative procedure that begins by initializing student
abilities θi to observed GPA scores and then alternates between finding the optimal course param-
eters while the student abilities are held fixed and finding the optimal student abilities while fixing
the course parameters. That is, we alternate between

(a∗
k
,b∗

k
) = argmin

ak ,bk

∑
n=1, ...,N

such that

kn=k

(дn − д̂in,k )2 for k = 1, . . . ,K (5a)

and

θ ∗i = argmin
θi

∑
n=1, ...,N

such that

in=i

(дn − д̂i,kn
)2 for i = 1, . . . , I . (5b)

We fitted the logistic model (Equation (2)) to the student grade dataset (see Section 3) using
the iterative procedure (Equation (5)) and we computed the RMSE of the predictions. Figure 1
shows the model RMSE plotted against the RMSE that results from using the observed GPA as a
predictor of course grades for each student. This data is then projected onto the difference in RMSE
in Figure 2, which shows that the modeled GPA is a better predictor of student course grades than
observed GPA for 83.6% of students.

The total RMSE of observed GPA and our logistic model (Equation (2)) as student course grade
predictors are shown in Table 1. From this we see that observed GPA has a 21% higher RMSE than
the logistic model.

For comparison, we also fitted the two-parameter linear model of Vanderbei et al. (2014) and
compared it to our two-parameter logistic model, with results as shown in Table 1. This linear

model has the form д̃ik = ãk θ̃i + b̃k , where д̃ik is the predicted grade for student i in course k , θ̃i
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Fig. 1. The RMSE (root mean square error) of the logistic model (Equation (2)) as a predictor of student

grades (vertical axis), plotted against the RMSE of the observed GPA as a predictor (horizontal axis). Points

below the 45◦ line indicate that the model (Equation (2)) is a better predictor than observed GPA.

Fig. 2. The difference between the RMSE (root mean square error) of observed GPA and the logistic

model (Equation (2)) as a predictor of student grades. Values to the left of center indicate that the

model (Equation (2)) is a better predictor than observed GPA, while points to the right indicate the reverse.

This plot is a projected view of the data in Figure 1 and shows that the model (Equation (2)) is a better overall

predictor of student grades than observed GPA.

Table 1. RMSE (Root Mean Square Error) of All

Student Course Grade Predictions from the Three

Different Prediction Methods

Prediction Method RMSE
Observed GPA 0.737
Logistic model (2) 0.609
Linear model of Vanderbei et al. (2014) 0.611
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Fig. 3. Observed GPA plotted against modeled GPA (Equation (6)) for each student.

is the ability of student i , ãk is the discrimination of course k , and b̃k is the difficulty of course k .
While very similar to our logistic model on this dataset, the linear model had a 0.4% higher error
than the logistic model. When used to predict course grades, our logistic model was better (lower
RMSE) than the linear model for 53.2% of students. We interpret this as weak but positive evidence
for the superiority of the logistic model for this dataset, given that both models have the same
number of parameters and the logistic model has the additional advantage that it can only make
plausible predictions (i.e., cannot predict below zero or above 4.0).

5 MODELED GPA AS AVERAGE PREDICTED GRADE OVER ALL COURSES

To remove the effect of course choice on GPA for student i , we first compute their predicted grade
д̂ik in all courses k = 1, . . . ,K . We then define their modeled GPA to be their GPA taken over all
courses using these predicted grades:

modeled-GPAi =
1

K

K∑
k=1

д̂ik . (6)

Because the modeled GPA is computed over all courses, all students are being compared on the
basis of the same set of courses (i.e., all of them). That makes modeled GPA a fairer metric of
student ability than observed GPA, which is heavily influenced by course choice.

Using the dataset described in Section 3, we computed the observed and modeled GPAs for
all students and plotted them against each other as shown in Figure 3. We see that the modeled
GPA tends to be somewhat higher than the observed GPA, especially for students with very low
GPAs. This finding suggests that students with low GPAs also took lower-graded courses, par-
tially explaining their low GPA. The model predicts that these students would do better if they
took higher-graded courses. If CS students are generally taking lower-graded courses, this type of
finding may inform academic advising to help students persist through what may be artificially
low GPAs based on course selection effects.

6 EXAMPLE: UNDERGRADUATE STUDENTS IN CS

We have shown in the previous section that the modeled GPA developed more accurately predicts
student grades than the traditional GPA, so it is a better metric for learning analytic approaches
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that require the use of student GPAs. We illustrate how these improved predictions significantly,
and systemically, affect the observations we can make with GPA data in learning analytics. Specif-
ically, we contrast findings generated from using observed GPAs with those generated from using
modeled GPAs for three cases. As an additional benefit, these example analyses provide insight
into the likelihood (or not) of gender bias in grading in CS courses at one institution. We choose
gender as a case study in part because there are enough women in the sample to have confidence
in the results. Other analyses are possible, including examinations of race, geographic origin, and
social-economic status.

The following analyses highlight the importance of taking individual student course choices
into consideration when using grade data by examining the grade point penalties of taking CS
courses/curricula or being a female in those courses/curricula. We present evidence at different
scales and timing. In this section, we begin by focusing on the performance of all students (not
just CS majors) in the first-year courses required for CS majors. We then examine the performance
of CS majors across all of their courses as well as in the CS curriculum specifically. Finally, we
conclude by examining correlations between the different GPA measures and standardized test
scores.

6.1 Penalty of Required First-Year CS Courses

As noted in the background section, grades in the first courses of a major deeply impact whether
students perceive they can succeed in that major. If a particular group of students underperform
expectations in introductory CS courses, then this may dissuade them from embarking on a CS
degree, leading to underrepresentation. Consequently, we begin by examining the general student
population, to see how introductory courses in the CS curriculum are graded. This dataset encom-
passes students in the College of Engineering and the College of Liberal Arts and Sciences, because
CS majors come from both colleges at our institution. We then disaggregate this data by gender to
examine whether students receive different grade point penalties based on gender.

The undergraduate CS program at Illinois requires a total of 128 credit hours to complete, with
required courses in CS, mathematics, and physics, as well as a variety of general education and
CS elective courses. We first examine how all students, from all majors, perform in the required
STEM courses in the CS program, as the relative performance in these courses is important in
determining student persistence (Ost 2010; Rask 2010). These courses consist of the calculus se-
quence (MATH 220/221, 231, 241), linear algebra (MATH 415), and physics (PHYS 211 and 212), as
well as a computer science introductory core (CS 125 - CS1, 173 - discrete mathematics, and 225 -
CS2). Students rarely take all 10 of these courses (MATH 220 and 221 both count as calculus 1, and
students often have Advanced Placement credit for math and physics), but all CS and prospective
CS students must have credit for these courses to graduate.

As can be seen in Figure 4, these courses are not easy. The average grade point penalty calcu-
lated when using the observed GPA (light blue bars) for these courses is +0.26; of these 10 courses,
only CS 125 has a negative penalty (i.e., is “good” for a student’s GPA). Furthermore, using the ob-
served GPA actually underpredicts the difficulty of these courses. The observed GPA doesn’t take
into account that the STEM majors in general, and CS majors in particular, are taking these chal-
lenging courses and so have depressed GPAs as a result. As described previously, these depressed
GPAs lower the observed penalties. The modeled GPA grade point penalties (dark blue bars) are
more than twice as large, at +0.55, and none of the grade point penalties calculated in this way
are negative. This implies that all of these courses lower, on average, the student’s GPA, with an
average penalty of over half a letter grade.

These results are very similar to STEM courses as a whole. If we examine all large (5,000 or more
student records) STEM courses for majors, we find that using the observed GPA to calculate the
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Fig. 4. Grade point penalties for all students who take the introductory courses in the CS curriculum. Positive

values indicate that students get lower grades in these courses than they do in other courses. A grade point

penalty of 1 would mean that a student would average a full letter grade lower in this course relative to his or

her other courses. Without exception, using the observed GPA understates the GPA penalty. Note that CS1

has the rubric CS 125, Disc. Math is CS 175, CS2 is CS 225, Calc. 1 is MATH 220/221, Calc. 2 is MATH 231,

Calc. 3 is MATH 241, Lin. Alg. is MATH 285, Mech. is PHYS 211, and E. & M. is PHYS 212. Error bars showing

the Standard Error of the Mean (SEM) are omitted from the chart for clarity; in all cases they are 0.01 or

less. The SEM of the average is 0.003, calculated using the weighted average of the standard deviations of

the individual courses. These results and other popular STEM classes, with student numbers, are tabulated

in the appendix.

grade point penalty yields an average of +0.24, and the modeled GPA grade point penalty aver-
age is +0.49. This broader result includes courses from biology, chemistry, and other engineering
disciplines, as well as math, physics, and CS (see table in the appendix).

We also examined these courses for differences in GPA penalties according to gender (Figure 5):
do women do relatively worse in these courses than men with equivalent GPAs? Gender-based dif-
ferences in grade point penalties are relatively small compared to their absolute size (Figure 4) and
can be positive or negative. In this case, the observed GPA (pink bars) yielded an average penalty
difference between women and men of −0.15 (i.e., female students with the same GPA as male
students did 0.15 grade points worse). In this case, the observed GPA systematically overestimates
the penalty difference that women receive. The male/female grade point penalties calculated from
the modeled GPA (red bars) are all less biased against women. Six of the 10 courses have posi-
tive penalty differences (i.e., men do relatively worse than women in these courses) and four are
negative. The average penalty difference is −0.04 grade points. This is evidence that gender-based
differences in course choice systematically bias the observed GPAs of men and women. Further-
more, if we examine the three CS courses in isolation, we find no gender penalty for women,
who have a positive (and very small) grade point penalty difference of +0.01. Interestingly, the
two physics courses in the sample are almost entirely responsible for the penalty differences be-
tween women and men, with the two courses having male/female grade point penalty differences
of −0.26 and −0.22 (i.e., women have larger grade point penalties than men in these two courses).
This is similar to the results found by Koester et al. (2016), who used observed GPA to calculate
the grade penalty.
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Fig. 5. Difference in grade point penalties for women and men in introductory courses in the CS curriculum.

Positive values indicate that women relatively outperformed men. A grade point penalty difference of 1 would

mean that a female student would average a full letter grade higher in this course relative to a male student

with the same overall GPA. Using the observed GPA to calculate the grade point penalty consistently lowers

the apparent female performance. Including course composition effects (red bars) reduces the average GPA

difference in this sample of courses from −0.15 to −0.04. Note that CS1 has the rubric CS 125, Disc. Math is

CS 175, CS2 is CS 225, Calc. 1 is MATH 220/221, Calc. 2 is MATH 231, Calc. 3 is MATH 241, Lin. Alg. is MATH

285, Mech. is PHYS 211, E. & M. is PHYS 212. Error bars showing the Standard Error of the Mean (SEM) are

omitted from the chart for clarity; in all cases they are 0.01 or less. The SEM of the average is 0.003, calculated

using the weighted average of the standard deviations of the individual courses. These results, with student

numbers, are tabulated in the appendix.

6.2 Penalty of CS Courses

Alternatively, we may be simply concerned with how students perform in all introductory CS
courses, as students may use their performance in either a major or a nonmajor CS course to
inform their decision on whether to major in the field. If we examine the results for the five largest
CS courses alone (CS 101 - CS1 for engineering majors, 105 - CS1 for nonengineering, non-CS
majors, 125 - CS1 for CS majors, 173 - discrete mathematics, and 225 - CS2; data in the appendix),
we find that the (adjusted) female/male GPA penalty is small in magnitude and mixed in sign,
with three courses favoring women and two favoring men. The average male/female grade point
penalty difference calculated from the modeled GPA for these five courses is zero (0.00).

This result is consistent with how CS-related majors perform in these courses. A previous sur-
vey of this dataset using observed GPAs (Tomkin et al. 2016) found that women did not do worse
than men in CS and related majors across 12 introductory STEM courses. Female majors in Mathe-
matics and Computer Science, and in Computer Engineering, have higher average scores than men
with equivalent GPAs: the average difference in grade point penalty between men and women is
0.14 ± 0.03 and 0.06 ± 0.02 grade points, respectively. Female Computer Science majors have the
same grade point penalty as men in these courses (−0.01 ± 0.01). The students in the sample who
graduated with Computer Science degrees have an average observed GPA of 3.21 and an average
modeled GPA of 3.46; on average, the courses that CS students take over the course of their degree
lower their recorded GPA by a quarter of a grade point.
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Fig. 6. Grade point penalties of CS majors for CS courses. Positive values indicate that students get lower

grades in these courses than they do in other courses. A GPA penalty of 1 would mean that a student would

average a full letter grade lower in this course relative to his or her other courses. Without exception, using

the observed GPA understates the GPA penalty. The average grade point penalty (weighting all courses

equally) is −0.03 for the observed data with a 95% CI [−0.02, −0.04], and +0.23 for the modeled data with a

95% CI [−0.02, −0.04]. The error bars show +/− 1 Standard Error of the Mean (SEM). The SEM of the average

(0.004) is calculated using the weighted average of the standard deviations of the individual courses. These

results, with course names and student numbers, are tabulated in the appendix.

This CS grade point penalty is reflected in the grades awarded in all CS courses, as shown in
Figure 6. The average grade point penalty determined from the observed GPA is small and negative
(−0.03), while the average grade point penalty determined from the modeled GPA is large and
positive, at 0.23. The gender difference in the grade point penalty, shown in Figure 7, is usually
negative (i.e., women have higher grade point penalties than men). Again, using the observed GPA
overestimates the difference: the average across all courses shrinks from −0.09 to −0.05 when the
modeled GPA is used to make the calculation. Of the 22 courses, women do better than expected,
relative to men, in nine, and do worse than expected, relative to men, in 13.

6.3 GPA and Standardized Test Scores

The grades of CS majors are somewhat predicted by standardized test scores: we find that the
modeled GPA of CS majors and their ACT composite score has a correlation coefficient of 0.34.
ACT math scores are slightly more predictive of GPA, with a correlation coefficient of 0.37. Note
the the ACT math scores have a weaker correlation with the observed GPA (0.20)—higher-scoring
students are more likely to enroll in STEM courses, which penalize GPAs. The standardized test
scores of CS students do not differ greatly by gender: average composite ACT scores, ACT math
scores, and SAT totals for female CS majors are 31.22, 32.00, and 1, 362; male averages are 31.35,
32.61, and 1, 386.

This gender difference in the CS majors’ GPA penalty appears to be partly related to character-
istics of students captured by these standardized test scores. If we redo the GPA penalty calcula-
tion shown in Figure 7 but only include students with ACT math scores of 34 and higher (the 99th
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Fig. 7. Difference in grade point penalties of CS majors for women and men in CS courses. Positive values

indicate that women relatively outperformed men. A grade point penalty difference of 1 would mean that

a female student would average a full letter grade higher in this course relative to a male student with the

same overall GPA. The average grade point penalty difference (weighting all courses equally) is −0.09 for

the observed data with a 95% CI [−0.09, −.1], and −0.05 for the modeled data with a 95% CI [−0.04, −0.06].

The error bars show +/− 1 Standard Error of the Mean (SEM). The SEM of the average (0.004) is calculated

using the weighted average of the standard deviations of the individual courses. These results, with course

names and student numbers, are tabulated in the appendix.

percentile of all students who take the math ACT), we find that the GPA penalty difference shrinks
and changes sign (to +0.02).

There is a large gender imbalance in the number of students completing CS bachelor degrees in
the dataset, which is produced by a large gender imbalance in the gender of incoming students. Of
the 3,277 students whose last declared major is CS, 2,851 were male and 425 were female: 13% of
finishing CS majors were female at this institution. It is possible that the proportion of women in
courses impacts their performance in those courses. Unfortunately, it’s not clear from this data if
this is the case, as there is insufficient spread in the female/male fractions. Almost all CS courses
matched, to within a few percent points, the overall proportion of female CS majors (13%). The
one course that is close to gender parity was CS 105, a nonmajors course that has 41% female
enrollment, and in which women outperformed men by 0.05 grade points when using modeled
GPA in the calculation (Table 3).

7 DISCUSSION AND CONCLUSIONS

The GPA is an attractive way to measure student college success; it’s a single-number metric,
the majority of institutions use the same system (so results can be compared widely), and grades
reflect a judgment by the institution itself as to the academic aptitude of students. Furthermore,
all institutions have access to grade data, and so can readily use individual course grades and
GPAs to analyze student performance across the curriculum. This analysis must be done with care,
however: although one might expect that grades will differ between institutions, it is clear from
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the results here that grades systematically vary within institutions, by course and by program. The
overall GPA of a student is dependent on each individual student’s course of study.

Different courses of study have different GPA penalties, so the observed overall GPA is flawed
as a yardstick of student academic potential: a student will increase his or her apparent GPA if he
or she chooses a course of study made up of many low (or positive) grade point penalty courses.
Insidiously, if we use observed GPA to try to detect this problem (by examining the difference
between average GPA and average course grade), we greatly underestimate the size of the penalty,
as students in lower-graded courses cluster (CS students, for example, are all required to take a
large number of high-penalty courses).

The logistic model described here accounts for course heterogeneity, producing a “modeled
GPA” that much more accurately predicts student performance. The modeled GPA consistently
better predicts how well students perform in the courses taken than the observed GPA, with a sig-
nificantly lower root mean square error between predicted and actual grades. The logistic model
also performs better (has a lower error) than a linear model. The logistic model does so by making
use of all of the available data (all courses and students are included) and does not require any
subjective selection of what to include. It also enables us to get a better idea of the size of grad-
ing variation across courses, as we can now use the modeled GPA to determine course grading
penalties.

We find that the average grade point penalties of the introductory CS courses and introductory
STEM courses sampled in this study are 0.55 and 0.49, respectively. This implies that students lower
their GPA by about half a letter grade when they take only introductory courses in CS and STEM—
possibly dissuading some students from continuing in the CS program. Note that calculations that
use the observed GPA to determine the grade point penalty significantly underestimate this effect
(Figure 4). The problem of using the observed GPA to calculate penalties is underlined when we
survey CS classes as a whole: it would suggest that taking CS courses has no effect on your GPA
(Figure 7), whereas in fact they reduce your GPA by about a quarter of a grade point.

As a consequence, CS students suffer from observed GPAs that are lower than their actual aca-
demic performance warrants. We find that the overall grade point penalty for CS majors across all
of their courses is 0.25—a quarter of a letter grade. Enrolling in a CS major is bad for your GPA.

Interestingly, gender differences in course penalties change when using the modeled GPA rather
than the observed GPA. In the courses examined here, using the observed GPA to calculate the gen-
der penalty systematically overestimated the impact of gender on expected course performance.
This suggests that male and female students choose different patterns of courses, even when they
share the same major (we see the same pattern both for all students and for CS majors only). The
reasons for this difference in course selection are worthy of further study. Although the (modeled
GPA) grade point penalty often showed that women underperformed expectations relative to men,
changing the specifications altered this: restricting the sample to the highest-scoring students re-
versed the sign of the effect. Furthermore, women did better than expected in individual courses
about as often as doing worse than expected. If gender is a factor in CS academic achievement in
this dataset, it appears that it is relatively small, and is of uncertain sign. There was no treatment
of the data that resulted in a programmatic GPA gender difference larger than 0.05 of a point.

We avoid making strong statements about the presence or absence of discrimination in this
article. Readers should be wary of “researcher degrees of freedom” (Simmons et al. 2011) when
assessing claims about the statistical significance of studies such as this one—there are many ways
in which the method of partitioning the data (by deciding what courses to include in the analysis,
for example) has the potential to change the significance of the findings. It is clear, however, that
any study that does not control for heterogeneity in course grades may produce significantly biased
results.
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The modeled GPA generated by the model is a surprisingly good predictor of course perfor-
mance across all courses examined, which includes humanities and social sciences as well as STEM
courses. There are, for example, no obvious bimodal features in the error between observed and
predicted grades, which might be evidence of discipline-specific aptitudes. This suggests that a
single dimension predicts much of the variation in student success in college courses. This single
dimension is well characterized by standardized tests for this dataset; the correlation coefficient
between the ACT math scores and modeled GPA is 0.37, for example. Note also that standard-
ized tests are better predictors of student academic potential than studies that use observed GPA
would suggest: the correlation coefficient between math ACT and observed GPA is just 0.20 for
the same data. This difference in correlations is the result of the course selection bias discussed in
this article: students with higher test scores are more likely to be enrolled in courses with greater
grade point penalties, which depresses their observed GPA and weakens the correlation between
standardized tests and observed GPA. The result found here suggests that studies that do not take
into account course grading heterogeneity will significantly underpredict the correlation between
standardized tests and GPA.

Grades and GPA are ubiquitous in assessing student performance, both formally and in edu-
cation research. This article describes the problem that course grading heterogeneity presents in
making use of observed grades and GPA in several learning-analytic applications. It also shows
how a logistic model can produce a modeled GPA that can be used to overcome the problems as-
sociated with course grading heterogeneity and enable researchers and educators to better assess
student performance.

APPENDIX

The observed GPA data for the large STEM courses and all CS courses discussed in the article is
shown in Tables 2 and 3.

Table 2. Data for Large STEM Courses Used in Campus Analysis Section and Figures 4 and 5

Number Observed GPA Modeled GPA
Course of Grade Observed GPA Modeled GPA Male-Female Male-Female
Rubric Records Penalty Oenalty Penalty Penalty
CHEM 102 22,356 0.545 0.797 −0.360 −0.203
CHEM 103 23,665 −0.389 −0.156 0.009 0.174
CHEM 104 13,815 0.493 0.707 −0.270 −0.144
CHEM 105 15,107 −0.102 0.087 −0.032 0.098
CHEM 232 9,177 0.510 0.682 −0.276 −0.202
CHEM 233 7,880 0.187 0.321 −0.096 −0.029
CS 101 9,481 0.053 0.320 −0.098 0.001
CS 105 6,448 0.115 0.197 −0.207 −0.058
CS 125 5,373 −0.135 0.130 −0.227 −0.126
CS 173 5,301 0.300 0.614 0.071 0.143
CS 225 6,464 0.249 0.539 −0.085 0.021
ECE 110 6,635 0.047 0.420 −0.120 −0.042
ECE 205 5,104 0.223 0.472 −0.040 −0.014
IB 150 8,037 0.007 0.161 −0.167 −0.073

(Continued)
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Table 2. Continued

Number Observed GPA Modeled GPA
Course of Grade Observed GPA Modeled GPA Male-Female Male-Female
Rubric Records Penalty Oenalty Penalty Penalty
MATH 220 8,464 0.435 0.699 −0.168 0.000
MATH 221 8,137 0.151 0.448 −0.141 0.022
MATH 225 6,336 0.157 0.460 0.020 0.119
MATH 231 17,682 0.347 0.648 −0.095 0.050
MATH 241 20,172 0.429 0.716 −0.154 −0.035
MATH 285 9,469 0.194 0.451 0.078 0.138
MATH 415 11,331 0.234 0.503 −0.052 0.030
MCB 150 10,201 0.366 0.537 −0.247 −0.156
MCB 250 5,582 0.687 0.854 −0.224 −0.166
MCB 251 5,582 −0.033 0.116 −0.125 −0.068
PHYS 211 17,329 0.186 0.516 −0.351 −0.262
PHYS 212 16,157 0.387 0.700 −0.301 −0.227
PHYS 213 10,962 0.481 0.771 −0.203 −0.129
PHYS 214 11,995 0.466 0.755 −0.244 −0.180
STAT 400 5,115 0.199 0.445 0.049 0.163
TAM 212 6,251 0.482 0.744 −0.133 −0.099

Table 3. Data for CS Courses as Displayed in Figure 7

Number Observed GPA Modeled GPA
Course of Grade Observed GPA Modeled GPA Male-Female Male-Female
Rubric Course Name Records Penalty Penalty Penalty Penalty

CS 100 Freshman Orientation 1,600 −0.61 −0.33 0.07 0.14
CS 101 Intro Computing: Engrg & Sci 73 −0.36 −0.09 0.09 −0.05
CS 105 Intro Computing: Non-Tech 53 −0.45 −0.24 −0.12 0.05
CS 125 Intro to Computer Science 2,162 −0.37 −0.08 −0.24 −0.18
CS 173 Discrete Structures 2,278 0.18 0.47 0.10 0.15
CS 210 Ethical & Professional Issues 2,040 −0.41 −0.16 0.13 0.17
CS 225 Data Structures 2,390 0.10 0.38 −0.10 −0.03
CS 231 Computer Architecture I 1,151 0.13 0.48 −0.20 −0.16
CS 232 Computer Architecture II 1,218 0.02 0.33 −0.34 −0.31
CS 241 System Programming 2,462 0.52 0.78 −0.43 −0.38
CS 242 Programming Studio 1,911 −0.38 −0.14 −0.08 −0.03
CS 357 Numerical Methods I 1,622 0.20 0.42 0.00 0.06
CS 373 Theory of Computation 1,323 0.28 0.54 −0.01 0.04
CS 397 Individual Study 786 − 0.52 − 0.41 0.01 0.03
CS 411 Database Systems 1,494 − 0.01 0.24 0.01 0.05
CS 418 Interactive Computer Graphics 786 0.02 0.28 −0.10 −0.07
CS 421 Progrmg Languages & Compilers 1,909 −0.27 0.43 −0.08 −0.04
CS 427 Software Engineering I 974 −0.27 0.02 −0.28 −0.21
CS 440 Artificial Intelligence 703 0.32 0.54 −0.07 0.00
CS 461 Computer Security I 751 0.09 0.36 −0.06 −0.04
CS 473 Algorithms 1,683 0.63 0.90 −0.22 −0.18
CS 498 Special Topics 1,731 0.01 0.21 −0.14 −0.13

ACM Transactions on Computing Education, Vol. 18, No. 4, Article 17. Publication date: September 2018.



17:16 J. H. Tomkin et al.

ACKNOWLEDGMENTS

Thanks to Lin Fan and Debbie Dilman for their invaluable help in gathering and formatting the
data for this analysis. Thanks to the reviewers for insightful comments that greatly improved the
article.

REFERENCES

W. D. Cohen. 2000. The grade point average (GPA): An exercise in academic absurdity. National Teaching & Learning Forum

9, 5 (2000), 1–4.

J. G. Cromley, T. Perez, and A. Kaplan. 2016. Undergraduate STEM achievement and retention: Cognitive, motivational,

and institutional factors and solutions. Policy Insights from the Behavioral and Brain Sciences 3, 1 (2016), 4–11.

T. Hastie, R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning. Springer-Verlag. DOI:http://dx.doi.org/

10.1007/978-0-387-84858-7

S. Hurtado, M. K., Eagan, J. H. Pryor, H. Whang, and S. Tran. 2012. Undergraduate Teaching Faculty: The 2010–2011 HERI

Faculty Survey. Higher Education Research Institute, UCLA, Los Angeles, CA.

V. E. Johnson. 2003. Grade Inflation: A Crisis in College Education. Springer-Verlag, New York.

S. Katz, D. Allbritton, J. Aronis, C. Wilson, and M. L. Soffa. 2006. Gender, achievement, and persistence in an undergraduate

computer science program. SIGMIS Database 37, 4 (2006), 42–57. DOI:http://dx.doi.org/10.1145/1185335.1185344

B. P. Koester, B. G. Galina, and T. A. McKay. 2016. Patterns of gendered performance difference in introductory STEM

courses. Arxiv Preprint. DOI:http://dx.doi.org/arXiv:1608.07565

M. L. Nering and R. Ostini (Eds.). 2010. Handbook of Polytomous Item Response Theory Models. Routledge.

B. Ost. 2010. The role of peers and grades in determining major persistence in sciences. Economics of Education Review 29,

6 (2010), 923–934.

K. Rask. 2010. Attrition in STEM fields at a liberal arts college: The importance of grades and pre-collegiate preferences.

Economics of Education Review 29, 6 (2010), 892–900.

H. Rosovsky and M. Hartley. 2002. Evaluation and the Academy: Are We Doing the Right Thing? Grade Inflation and Letters

of Recommendation. American Academy of Arts & Sciences, Cambridge, MA.

E. Seymour and N. M. Hewitt. 1997. Talking About Leaving: Why Undergraduates Leave the Sciences. Westview Press, Boulder,

CO.

J. P. Simmons, L. D. Nelson, and U. Simonsohn. 2011. False-positive psychology undisclosed flexibility in data collection

and analysis allows presenting anything as significant. Psychological Science 22, 11 (2011), 1359–1366.

T. R. Stinebrickner and R. Stinebrickner. 2011. Math or Science? Using Longitudinal Expectations Data to Examine the Process

of Choosing a College Major. National Bureau of Economic Research, Cambridge, MA.

J. G. Stout, N. Dasgupta, M. Hunsinger, and M. A McManus. 2011. STEMing the tide: Using ingroup experts to inoculate

women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social

Psychology 100, 2 (2011), 255–270. DOI:http://dx.doi.org/10.1037/a0021385

A. C. Strenta, R. Elliott, R. Adair, M. Matier, and J. Scott. 1994. Choosing and leaving science in highly selective institutions.

Research in Higher Education 35, 5 (1994), 513–547.

J. Tomkin, M. West, and G. L. Herman. 2016. A methodological refinement for studying the STEM grade-point penalty. In

46th Annual Frontiers IEEE Frontiers in Education Conference (FIE’16).

R. J. Vanderbei, G. Scharf, and D. Marlow. 2014. A regression approach to fairer grading. SIAM Review 56, 2 (2014), 337–352.

DOI:http://dx.doi.org/10.1137/12088625X

Received September 2016; revised April 2017; accepted October 2017

ACM Transactions on Computing Education, Vol. 18, No. 4, Article 17. Publication date: September 2018.

http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1145/1185335.1185344
http://dx.doi.org/arXiv:1608.07565
http://dx.doi.org/10.1037/a0021385
http://dx.doi.org/10.1137/12088625X

