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Abstract
In this work, we study the problem of statistically verifying Probabilistic Computation
Tree Logic (PCTL) formulas on discrete-time Markov chains (DTMCs) with stratified and
antithetic samples. We show that by properly choosing the representation of the DTMCs,
semantically negatively correlated samples can be generated for a fraction of PCTL formulas
via the stratified or antithetic sampling techniques. Using stratified or antithetic samples, we
propose statistical verification algorithms with asymptotic correctness guarantees based on
sequential probability ratio tests, and show that these algorithms are more sample-efficient
than the algorithms using independent Monte Carlo sampling. Finally, the efficiency of the
statistical verification algorithm with stratified and antithetic samples is demonstrated by
numerical experiments on several benchmarks.
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1 Introduction

Statistical verification of temporal specifications has received increasing attention during
the past decade [2,6,9,15–17,25,26]. Compared to the symbolic approach, statistical model
checkers are usually more scalable to large-scale real-world problems with complicated
stochastic behavior [14,21–23,27]. The general idea of statistical verification is to treat the
problem of checking a PCTL formula on a probabilistic system as an hypothesis testing prob-
lem. By drawing sample behaviors from the underlying probabilistic system, the satisfaction
of the specification can be inferred with high confidence.

Currently, most statistical model checking algorithms previously proposed crucially rely
on independent Monte Carlo sampling. Specifically, the underlying probabilistic system is
“simulated” to generate a sample path and a new sample is drawn in the same manner in each
round. Consequently, the samples are independent and identically distributed (i.i.d.).

The main thesis of this paper is that the sampling cost for verification can be significantly
reduced if the statistical model checker draws semantically negatively correlated samples,
as opposed to independent samples. Specifically, let us consider the core task of a statistical
model checker, namely, to determine if the measure of executions satisfying a property
φ is greater than some threshold p. For simplicity, assume that the truth of φ itself can
be determined by a finite prefix of the execution. In such a situation, the model checker
draws sample executions, determines how many of the executions satisfy φ, and uses this to
estimate the measure of paths satisfying φ. Thus, each sample can be viewed as a 0/1-valued
random variable Xi (which takes value 1 if the execution satisfies φ, and 0 otherwise), whose
expectation is estimated by

X̄ = 1

n

n∑

i=1

Xi .

One factor that plays an important role in determining how many samples are needed for the
algorithm to be confident in its answer is the variance. Informally, the lower the variance of
the estimate, the more likely the estimate is to be close to the actual mean, and therefore, the
algorithm requires fewer samples. In general, the variance of the estimate is given by

Var
[
X̄

] = 1

n2

n∑

i=1

Var
[
Xi

] + 2

n2

n∑

i=1

n∑

j=i+1

Cov
[
Xi , X j

]
.

If the samples are i.i.d., then the covariance is 0, and the variance is given by

Var
[
X̄

] = 1

n
Var

[
X

]
.

However, as can be seen from the above expression, the variance can be reduced if the samples
are semantically negatively correlated, i.e.,

n∑

i=1

n∑

j=i+1

Cov
[
Xi , X j

] ≤ 0.

Common techniques to generate such negatively correlated samples with negligible addi-
tional computational cost include stratified sampling and antithetic sampling, which have
been popular among the statistics community in improving the accuracy of statistical esti-
mation [7,10,11]. The general idea is to generate samples that are repellent to each other
— a sample occupying some region forbids other samples entering the same region. In this
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paper, we present statistical model checking algorithms for verifying finite horizon PCTL
properties on discrete time Markov chains (DTMC) using semantically negatively correlated
samples generated by stratified sampling and antithetic sampling.

To ensure a lucid exposition of themain ideas,weonly consider non-nestedPCTL formulas
of the form P∼pφ, where φ is a formula without probabilistic operators; in other words,
φ’s truth can be determined on a single path. PCTL formulas in general form with nested
probabilistic operators can be handled in the standard manner using the approach proposed
in [15–17]. Themain contribution of this paper are sequential probability ratio tests that work
when samples are drawn using stratified sampling or antithetic sampling, which help reduce
the total number of samples needed for a statisticalmodel checker to be confident in its answer.

The results regarding stratified sampling in this paper have appeared in [24] without
proofs. This paper extends [24] by including the proofs for the results regarding stratified
sampling and providing extra results regarding to antithetic sampling. The rest of the paper is
organized as follows. The preliminaries are given in Sect. 2. In Sect. 3, we show that the strat-
ified sampling technique can be used to generate semantically negatively correlated samples
for non-nested PCTL formulas, and propose a statistical verification algorithm using strati-
fied samples that is asymptotically more sample-efficient that the ones using i.i.d. samples.
The same problem is studied in Sect. 4 with antithetic samples. In Sect. 5, we demonstrate
the efficiency of the statistical verification algorithm with stratified samples by numerical
experiments on several benchmarks. Finally, we conclude this work in Sect. 6.

2 Preliminaries

We denote the set of natural numbers and real numbers by N,R. We take the convention that
00 = 1. For n ∈ N, let [n] = {1, 2, . . . , n}. A permutation of [n] is a bijection π : [n] → [n].
For p ∈ R

n , the i th entry of p is denoted by pi . For M ∈ R
n×m , the entry in the i th row, j th

column of M is denoted by Mi j .

2.1 Markov chains

Consider a time-homogeneous discrete-timeMarkov chain (DTMC)M of n numbered states
with initial state s ∈ [n] and transition probability matrix M , in which Mi j defines the
transition probability from i to j . For any i ∈ [n],

n∑

j=1

Mi j = 1. (1)

For a sample path X = {X(t)}t∈N ⊆ [n] of the Markov chain, we can write

X(t + 1) = f (X(t), E(t)), t ∈ N, (2)

where E(t) ∼ U[0,1). At each time t , the Markov chain is driven by the random seed E(t)
uniformly sampled from the interval U[0,1], thus (2) induces a surjection from [0, 1]T to the
space of sample paths of the Markov chain M of length T .

Generally, a discrete-time Markov chain M can be represented in (2) in multiple ways.
In this work, we choose the following representation

f (i, e) =
{
1, if 0 ≤ e < Mi1,

j, if
∑ j−1

k=1 Mik ≤ e <
∑ j

k=1 Mik .
(3)
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2.2 PCTL

Probabilistic computational tree logic (PCTL) is commonly used to express probabilistic
properties of discrete-time Markov chains. In this paper, we only consider PCTL formulas
over finite time horizons. The syntax and semantics of the logic is given below.

Definition 1 (Syntax) Let Ω be a given set of atomic propositions. A PCTL formula is
generated recursively by

φ ::= Ω | ¬φ | φ ∧ ψ | P∼p(Xφ) | P∼p(φU≤Tψ), (4)

where ω ∈ Ω is an atomic proposition, ∼∈ {<,>,≤,≥}, p ∈ (0, 1) is a probability
threshold, and T ∈ N is a time bound.

Remark 1 When p ∈ {0, 1}, the PCTL formula reduces to a CTL formula. In this work, we
only consider p ∈ (0, 1). Other common temporal operators can be constructed by composing
the temporal logic operators given in Definition 1.

Definition 2 (Semantics) Let L : [n] → 2Ω be a given labeling function where [n] is the set
of states of the Markov chain M. A random sample path starting from the state s ∈ [n] is
denoted by s(0) = s, s(1), s(2), . . .. The semantics of PCTL is defined recursively by

s |	 ω iff ω ∈ L(s),

s |	 ¬φ iff s 
|	 φ,

s |	 φ ∧ ψ iff s |	 φ and s |	 ψ,

s |	 P∼p(Xφ) iff P
[
s(1) |	 φ

] ∼ p,

s |	 P∼p(φU≤Tψ) iff

P
[∃t ≤ T : s(0) |	 φ, . . . , s(t − 1) |	 φ, s(t) |	 ψ

] ∼ p.

(5)

2.3 Statistical verification via hypothesis testing

As mentioned in Sect. 1, we focus on non-nested PCTL formulas of the form P∼pφ in this
work. Since φ is a formula without probabilistic operators, its correctness can be determined
on any sample path of the Markov chainM. Thus, the verification of P∼pφ can be converted
to a hypothesis testing problem. Specifically, for any path X of the Markov chain M, we
define with a slight abuse of notation that

φ(X) =
{
1, if X satisfies φ,

0, otherwise.
(6)

Then, checking P<pφ is semantically equivalent to the composite hypothesis testing (CHT)
problem:

H0 : Pφ < p,

H1 : Pφ ≥ p,
(7)

where Pφ = P
[
φ(X)

]
.

Generally, the CHT problem (7) is challenging. Therefore, as with other literature in this
area, we assume some a priori knowledge on the distance |Pφ − p|.
Assumption 1 Let |Pφ − p| > δ for some known indifference parameter δ > 0. The interval
(Pφ − δ, Pφ + δ) is called the indifference region.
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With Assumption 1, the CHT problem (7) can be solved by statistically testing between
Pφ ≤ p − δ and Pφ ≥ p + δ. By considering the worst case, it suffices to solve a simple
hypothesis testing (SHT) problem with two hypothesis H ′

0 and H ′
1:

H ′
0 : Pφ = p − δ,

H ′
1 : Pφ = p + δ.

(8)

In addition, by Assumption 1, the PCTL formulas P<pφ and P≤pφ, or P>pφ and P≥pφ, are
equivalent. To be concrete, we consider P<pφ in the rest of this section; formulas in other
forms can be dealt with in similar ways.

The SHT problem (8) can be solved efficiently by sequential probability ratio tests
(SPRT) [15–17]. Specifically, let X1, X2, . . . be independent sample paths of M. For a
confidence level of Type I error

α = P
[
choose H ′

1 | Pφ = p − δ
]

> 0, (9)

and Type II error
β = P

[
choose H ′

0 | Pφ = p + δ
]

> 0, (10)

the SHT problem (8) is checked by SPRT with

Λ(X) =
n∏

i=1

(p + δ)φ(Xi )(1 − p − δ)1−φ(Xi )

(p − δ)φ(Xi )(1 − p + δ)1−φ(Xi )
, (11)

where X = (X1, . . . , Xn). H0 is accepted if Λ(X) >
β

1−α
; H0 is accepted if Λ(X) >

1−β
α

;
otherwise, draw a new sample Xn+1.

3 Statistical verification using stratified samples

Stratified sampling is an approach to generate negatively correlated random variables. In this
section, we show that by choosing a proper representation of the Markov chainM, the strati-
fied sampling technique can be applied to generate semantically negatively correlated sample
paths, reducing the sampling cost for statistically verifying a fraction of PCTL formulas. For
a lucid explanation of the main ideas, we focus on non-nested PCTL formulas of the form
P∼pφ, where φ is a formula without probabilistic operators; in other words, φ’s truth can
be determined on a single path. PCTL formulas in general form with nested probabilistic
operators can be handled in the standard manner using the compositional approach proposed
in [15–17].

3.1 Stratified sampling

The stratified sampling algorithm generates m sample paths simultaneously. Let [0, 1) =
[0, 1

m ] ∪ . . . ∪ [m−1
m , 1) be a partition of [0, 1). At each time t , a sample is drawn from

each sub-interval. To avoid correlation between steps, we generate a permutation π on [n]
uniformly at each time t , and then assign the sub-interval [π(i)−1

m ,
π(i)
m ) to the i th path. The

random seeds of the m-stratified sample paths are repellent to each other at each time t , as
no more than one of them can occupy the same sub-interval. Accordingly, due to the choice
of f (i, e) in (3), the m-stratified sample paths are repellent to each other at each time t , in
the sense that the probability of any two of them visiting the same state of the Markov chain
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is no more than (and usually less than) that of two independent samples. This is summarized
by Definition 3 and Algorithm 1. Compared to i.i.d. samples, the additional computational
cost for generating stratified samples is negligible.

Definition 3 {Xi }i∈[m] is a set of m-stratified samples if they are generated by Algorithm 1.

Algorithm 1 m-stratified sampling
Require: Number of strata m, number of steps T , and initial state s
1: t = 0
2: for i ∈ [m] do
3: Xi (0) = s
4: end for
5: for t = 1, . . . , T − 1 do
6: Take π to be a permutation of [m]
7: for i ∈ [m] do
8: Take Ei ∼ U[ π(i)−1

m ,
π(i)
m )

9: Xi (t + 1) = f (Xi (t), Ei (t))
10: end for
11: end for
12: return {Xi }i∈[m]

3.2 Properties of stratified samples

Now we show that for the PCTL formulas satisfying Assumption 2, the m-stratified samples
{Xi }i∈[m] are semantically negatively correlated, as stated in Theorem 1. By the syntax of
PCTL, φ is either of the form Xψ or ψ1U≤Tψ2, where ψ1 and ψ2 are directly checkable on
the states of the Markov chain M. We denote the set of states where ψ holds by

Vψ = {s ∈ [n]|ψ ∈ L(s)} . (12)

Assumption 2 For a PCTL formula of the form φ = ψ1U≤Tψ2, we assume Vψ2 ⊆ Vψ1 .

Theorem 1 With Assumption 2, let {Xi }i∈[m] be m-stratified samples from Markov chainM
and φ be a probabilistic-operator-free PCTL formula with satisfaction probability Pφ . Then,
for any i, j ∈ [m],
(i) E

[∑m
i=1 φ(Xi )/m

] = Pφ;
(ii) Cov

[
φ(Xi ), φ(X j )

] ≤ 0 for i 
= j .

Proof (i) By Algorithm 1, for the sample Xi with i ∈ [n], the random seeds Ei (t)
are drawn independently and uniformly from [0, 1] for all t ∈ N. Therefore, we have
P
[
φ(Xi )

] = Pφ for all i ∈ [n], which immediately gives (i).
(ii) By the syntax of PCTL (1), it suffices to prove the result in two specific cases: 1)
φ = ψ1U≤Tψ2 and 2) φ = Xψ , where ψ,ψ1, ψ2 are atomic propositions.

(1) φ = ψ1U≤Tψ2: Recalling Assumption 2, we have Vψ2 ⊆ Vψ1 , where Vψ is the
set of states labeled by ψ . Without loss of generality, we can number the states of
the Markov chain M such that Vψ1 = [n1] and Vψ2 = [n2] where n1 ≥ n2.
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Claim 1: For any r1, r2 ∈ [n] and any i 
= j ∈ [n], we have
P
[
Xi (t + 1) ∈ Vψ1 | X j (t + 1) ∈ Vψ1 , Xi (t) = r1, X j (t) = r2

]

≤ P
[
Xi (t + 1) ∈ Vψ1 | Xi (t) = r1, X j (t) = r2

]
.

To prove Claim 1, it suffices to show that

P = P
[
Xi (t + 1) ∈ Vψ1 , X j (t + 1) ∈ Vψ1 |Xi (t) = r1, X j (t) = r2

]

− P
[
Xi (t + 1) ∈ Vψ1 |Xi (t) = r1, X j (t) = r2

]

× P
[
Xi (t + 1) ∈ Vψ1 |X j (t) = r1, X j (t) = r2

]

≤ 0. (13)

Let S = ∑n1
k=1 Mkr1 and R = ∑n1

k=1 Mkr2 , where M is the transition probability
matrix. Then we have

P
[
Xi (t + 1) ∈ Vψ1 |Xi (t) = r1, X j (t) = r2

] = P
[
Ei (t) ≤ S

] = S,

P
[
X j (t + 1) ∈ Vψ1 |Xi (t) = r1, X j (t) = r2

] = P
[
E j (t) ≤ R

] = R.

The two random seeds Ei (t) and E j (t) are distributed uniformly on [0, 1]2 −⋃m
i=1[(i − 1)/m, i/m]2, as shown in Fig. 1. Without loss of generality, assume

S ≤ R. If �mS� < �mR�, where �·� is the floor function, we have

P = m

m − 1

[
SR − 1

m2 �mS� − 1

m
(S − �mS�

m
)
] − SR

= S(R − 1)

m − 1
≤ 0, (14)

where the equality holds if and only if S = 0 or R = 1. If �mS� = �mR�, we have

P = m

m − 1

[
SR − 1

m2 �mS� −
(
S − �mS�

m

)(
R − �mR�

m

)]
− SR. (15)

Since
∂P
∂S

= �mR�
m − 1

− R and
∂P
∂R

= �mS�
m − 1

− S, (16)

the maximum of (15) is achieved when the derivative in (16) is zero, namely when

�mR� = (m − 1)R = �mS� = (m − 1)S. (17)

Plugging (17) back into (15) gives P ≤ 0, where the equality holds if and only if
S ∈ {0, 1} or R ∈ {0, 1}.

Claim 2: For any r1, r2 ∈ [n] and any i 
= j ∈ [n], we have
P
[
Xi (t + 1) ∈ Vψ1 |X j (t + 1) ∈ Vψ2 , Xi (t) = r1, X j (t) = r2

]

≤ P
[
Xi (t + 1) ∈ Vψ2 |Xi (t) = r1, X j (t) = r2

]
.

The proof ofClaim 2 is similar to that of ofClaim 1. The equality holds if and only if if
and only ifP

[
Xi (t+1) ∈ Vψ1 |Xi (t)

] ∈ {0, 1} orP[
X j (t+1) ∈ Vψ2 |X j (t)

] ∈ {0, 1}.
Now, we show that the events φ(Xi ) and φ(X j ) are negatively correlated. Assume

the initial state Xi (0) = X j (0) = r0 ∈ Vψ1 . Otherwise, (ii) trivially holds. Let A be
the event Xi (t) ∈ Vψ1 for t ∈ [T1 − 1] and Xi (T1) ∈ Vψ2 . Similarly, let B be the
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Fig. 1 Joint distribution of two stratified random seeds

event X j (t) ∈ Vψ1 for t ∈ [T2 − 1] and X j (T2) ∈ Vψ2 . By Claims 1 and 2, we have
for T1 > T2,

P
[
B|A] =

∑ ∏

t∈[T2]
P
[
X j (t) = r1 | X j (t − 1) = rt−1, A

]

=
∑ ∏

t∈[T2]
P
[
X j (t) = r1 | X j (t − 1) = rt−1, Xi (t) ∈ Vψ1 , Xi (t − 1) ∈ Vψ1

]

≤
∑ ∏

t∈[T2]
P
[
X j (t) = r1 | X j (t − 1) = rt−1

] = P
[
B

]
, (18)

where
∑

stands for
∑

r1∈Vψ1
. . .

∑
rT2−1∈Vψ1

∑
rT2∈Vψ2

, and the second equality holds
because of the Markovian property. The argument for T1 ≤ T2 is similar. Therefore,
we have P

[
φ(X j ) = 1 | φ(Xi ) = 1

] ≤ P
[
φ(X j ) = 1

]
. Similarly, we can show

P
[
φ(X j ) = 0 | φ(Xi ) = 0

] ≤ P
[
φ(X j ) = 0

]
. Thus, Cov

[
φ(Xi ), φ(X j )

] ≤ 0. The
equality holds if and only if φ is trivially true or false.
(2) φ = Xψ : Without loss of generality, assume Vψ = [l] for some l ∈ N. By the
semantics of PCTL, φ(Xi ) = 1 ⇐⇒ Xi (1) ∈ Vψ ⇐⇒ Ei (0) ≤ S = ∑l

j=1 Mjs ,

where s is the initial state. Thus, by (14) with R = S and t = 0, we have P
[
φ(Xi ) =

1, φ(X j ) = 1
] − S2 ≤ 0 and P

[
φ(Xi ) = 0, φ(X j ) = 0

] ≤ (1 − S)2, where the
equalities hold if and only if S ∈ {0, 1}. Thus, Cov[φ(Xi ), φ(X j )

] ≤ 0. The equality
holds if and only if φ is trivially true or false. ��

3.3 Sequential probability ratio test

To implement the SPRT on m-stratified samples {Xi }i∈[m], we consider the statistics

Y =
m∑

i=1

φ(Xi )/m. (19)

By Theorem 1, we have E
[
Y

] = Pφ . Following the argument in Sect. 2.3, to verify P<pφ,
it suffices to check

H ′
0 : E[

Y
] = p − δ,

H ′
1 : E[

Y
] = p + δ.

(20)
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In addition, the mean of m-stratified samples within each block are more concentrated than
the mean of m independent samples with the same mean,

Var
[
Y

] = 1

m2 Var
[ m∑

j=1

φ(X j )
]

= 1

m
Var

[
φ(X j )

] + 1

m

m∑

k=1,k 
= j

Cov
[
φ(X j ), φ(Xk)

]

≤ 1

m
Var

[
φ(X j )

]
. (21)

Finally, we show that there is no loss of statistical information by considering Y instead of
{Xi }i∈[m].

Theorem 2 The joint probability mass function π(x1, . . . , xm) of φ(X1), . . . , φ(Xm) only
depends on

∑m
i=1 φ(Xi ).

Proof Since the m-stratified samples are symmetric, π(x1, . . . , xm) is identical under an
arbitrary permutation in the arguments. Therefore, π(x1, . . . , xm) only depends on the sym-
metric polynomials

∑m
i=1 xi and

∑m
i=1

∑m
j=1 xi x j , …, x1, x2 . . . , xm . Each xi takes value

in {0, 1}, so the value of higher order polynomials are determined by
∑m

i=1 xi , namely the
number of 1s in x1, . . . , xm . Therefore, π(x1, . . . , xm) only depends on

∑m
i=1 xi . ��

Theorem 2 shows that to construct a statistical test for the satisfaction probability Pφ of the
formulaφ usingm-stratified samples (X1, . . . , Xn), it suffices to use the average statistic Y =∑m

i=1 φ(Xi )/m. Given the n independent samples Y (n) = {Y1, . . . , Yn} ⊆ {0, 1/m, . . . , 1}
of the average statistic Y , we can construct an SPRT algorithm similar to Sect. 2.3,

Λ′(Y (n)) = Πn
i=1

πH1(Y
(n))

πH0(Y
(n))

, (22)

where πH1 and πH0 are the probability mass functions of Yi under hypotheses H0 and H1,
respectively.

However, unlike the i.i.d. case in (11), the exact forms of πH1 and πH0 are hard to derive.
Therefore, for simplicity, we take an asymptotic approach via the Central Limit Theorem.
Let ν(Y (n)) be the empirical distribution given Y (n) and

Ȳn = 1

n

n∑

k=1

Yk, σ 2
n = 1

n

n∑

k=1

(Yk − Ȳn)
2 (23)

be the sample mean and sample variance, respectively. Then the Wald statistics converges to
the normal distribution N (0, 1) for large n:

Zn = Ȳn − θ

σn
→ N (0, 1), (24)

where θ = E
[
Y

]
and we assume σn 
= 0 in (24). Therefore, the probability ratio in (22)

converges to

Λ′(Y (n)) → Ce
− 2(Ȳn−p)δ

σ2n , n → ∞, (25)

for some normalizing constant C . In practice, this approximation is sufficiently accurate
when the number of samples is n ≥ 30 and E

[
Y

]
is not close to the end points 0 and 1,
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since the convergence of the probability ratio (25) is fast. When E
[
Y

]
is close to 0 or 1, the

distribution π(y) of Y will become skewed, and the convergence is slower [1,20]. When the
number of strata is m = 1, the probability ratio (25) is asymptotically equal to (11) in the
large sample limit n → ∞.

Using (25), we can construct a sequential hypothesis testing algorithm with an asymptotic
confidence guarantee, as shown in Algorithm 2. Noting that using the Wald statistics (24) in
SPRT is asymptotically optimal [20], we have the following theorem.

Theorem 3 The sampling cost of Algorithm 2 is asymptotically no more than that of the
SPRT (11) using i.i.d. samples.

Algorithm 2 SPRT using stratified samples
Require: Number of strata m, probability threshold p, indifference parameter δ, confidence levels α, β > 0,

and minimum number of samples N
1: n ← 0
2: ν ← {0, . . . , 0} ∈ Z

m+1

3: while true do
4: n ← n + 1
5: Take m-stratified samples {X1,n , . . . , Xm,n}
6: Yn ← ∑m

i=1 φ(Xi,n)

7: ν(Yn) ← ν(Yn) + 1
8: if n ≥ N/m then
9: μn ← 1

n
∑m+1

i=1
i−1
m ν(i)

10: σ 2
n ← 1

n2
∑m+1

i=1

(
i−1
m

)2
ν(i) − μ2

n
n

11: if μn − p < − σ2
n
2δ ln( 1−α

β
) then

12: return H0

13: else if μn − p >
σ2
n
2δ ln( 1−β

α ) then
14: return H1
15: end if
16: end if
17: end while

Remark 2 Finally, we note that the stratification can be performed over multiple time steps.
Take m = 16 as an example. As an alternative to taking 16 strata for a single step, we can
take 4 strata over 2 consecutive time steps, and generate 16-stratified samples, each from
the 42 combinations of strata. The SPRT algorithm for stratified samples over multiple time
steps is exactly the same as Algorithm 2.

4 Statistical verification using antithetic samples

Antithetic sampling is another approach to generate negatively correlated random variables.
In this section, we show that under Assumption 2, the antithetic sampling technique can be
employed to generate pairs of semantically negatively correlated sample paths and reduce
the sampling cost for statistical verification.
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4.1 Antithetic sampling

Let {X+(t)}t∈N be a sample path of the DTMCM driven by random seeds {E(t)}t∈N. Then
its antithetic sample path is driven by {1 − E(t)}t∈N, as summarized by Definition 4 and
Algorithm 3.

Definition 4 {X+, X−} is a pair of antithetic samples if they are generated by Algorithm 3.

Algorithm 3 Antithetic sampling
Require: Number of steps T and initial state s
1: t = 0, X+(0) = s, X−(0) = s
2: for t = 1, . . . , T − 1 do
3: Take E ∼ U[0,1)
4: X+(t + 1) = f (X+(t), E(t))
5: X−(t + 1) = f (X−(t), 1 − E(t))
6: end for
7: return {X+, X−}

4.2 Properties of antithetic samples

Similar to Sect. 3.2, for the PCTL formulas satisfying Assumption 2, a pair of antithetic
samples {X+, X−} are semantically negatively correlated, as stated in Theorem 4.

Theorem 4 With Assumption 2, let {X+, X−} be a pair of antithetic samples from Markov
chainM and φ be a probabilistic-operator-free PCTL formula with satisfaction probability
Pφ . Then

(i) E
[
φ(X+) + φ(X−)

]
/2 = Pφ;

(ii) Cov
[
φ(X+), φ(X−)

] ≤ 0.

Proof (i) The proof is similar to that of Theorem 1 by Algorithm 3. (ii) Similar to the
proof of Theorem 1, it suffices to consider the following two cases.

(1) φ = ψ1U≤Tψ2: By Assumption 2, we number the states of the Markov chain in
the same way as in the proof of Theorem 1.

Claim 1: For any r1, r2 ∈ [n], we have
P
[
X+(t + 1) ∈ Vψ1 | X−(t + 1) ∈ Vψ1 , X+(t) = r1, X−(t) = r2

]

≤ P
[
X+(t + 1) ∈ Vψ1 | X+(t) = r1, X−(t) = r2

]
.

To prove Claim 1, it suffices to show that

P = P
[
X+(t + 1) ∈ Vψ1 , X−(t + 1) ∈ Vψ1 | X+(t) = r1, X−(t) = r2

]

− P
[
X+(t + 1) ∈ Vψ1 | X+(t) = r1, X−(t) = r2

]

× P
[
X+(t + 1) ∈ Vψ1 | X−(t) = r1, X−(t) = r2

]

≤ 0.

(26)
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Fig. 2 Joint distribution of two antithetic random seeds

Let S = ∑n1
k=1 Mkr1 and R = ∑n1

k=1 Mkr2 , where M is the transition probability
matrix. Then we have

P
[
X+(t + 1) ∈ Vψ1 |X+(t) = r1, X−(t) = r2

] = P
[
E+(t) ≤ S

] = S,

P
[
X−(t + 1) ∈ Vψ1 |X+(t) = r1, X−(t) = r2

] = P
[
E−(t) ≤ R

] = R.

The two random seeds E+(t) and E−(t) are uniformly distributed on the line from
(0,1) to (1,0), as shown in Fig. 2. Without loss of generality, assume S ≤ R. In
addition, assume R + S ≥ 1. (The proof for R + S < 1 is similar.) Then we have

P = S + R − 1 − SR = −(1 − S)(1 − R) ≤ 0, (27)

where the equalities hold if and only if S = 1 or R = 1.
(2) φ = Xψ : The proof is similar to the proof of (2) of Theorem 1

��

4.3 Sequential probability ratio test

To implement the SPRT on antithetic samples {X+, X−}, we consider the statistics

Y = φ(X+) + φ(X−)

2
. (28)

By Theorem 4, we have E
[
Y

] = Pφ , so that verifying P<pφ is equivalent to checking the
SHT problem as given in (20). In addition, the mean of antithetic samples within each block
is more concentrated than the mean of m independent samples with the same mean,

Var
[
Y

] = 1

4
Var

[
φ(X+) + φ(X−)

]

= 1

2
Var

[
φ(X+)

] + 1

2
Cov

[
φ(X+), φ(X−)

]

≤ 1

2
Var

[
φ(X+)

]
.

(29)

In addition, by the same proof as Theorem 2, we know that Y is a sufficient statistic.
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Theorem 5 The joint probabilitymass functionπ(x+, x−)ofφ(X+)andφ(X−)only depends
on φ(X+) + φ(X−). Thus, to construct a statistical test for the satisfaction probability Pφ

of the formula φ using antithetic samples (X+, X−), it suffices to use the average statistic
Y = (φ(X+) + φ(X−))/2.

Given the n independent samples Y (n) = {Y1, . . . , Yn} ⊆ {0, 1/2, 1} of the average
statistic Y , we can construct an SPRT algorithm with asymptotic confidence guarantee in the
same way as Sect. 3.3, as shown in Algorithm 4. The asymptotic optimality of the algorithm
is stated in Theorem 6.

Theorem 6 The sampling cost of Algorithm 4 is asymptotically no more than that of the
SPRT (11) using i.i.d. samples.

Algorithm 4 SPRT using antithetic samples.
Require: Probability threshold p, indifference parameter δ, confidence levelsα, β > 0, andminimumnumber

of samples N
1: n ← 0
2: ν ← {0, 0, 0} ∈ Z

3

3: while true do
4: n ← n + 1
5: Take antithetic samples {X+,n , X−,n}
6: Yn ← φ(X+,n) + φ(X−,n)

7: ν(Yn) ← ν(Yn) + 1
8: if n ≥ N/2 then
9: μn ← 1

n
∑3

i=1
i−1
2 ν(i)

10: σ 2
n ← 1

n2
∑3

i=1

(
i−1
2

)2
ν(i) − μ2

n
n

11: if μn − p < − σ2
n
2δ ln( 1−α

β ) then
12: return H0

13: else if μn − p >
σ2
n
2δ ln( 1−β

α ) then
14: return H1
15: end if
16: end if
17: end while

Remark 3 Finally, we note that the stratified and antithetic sampling techniques can be com-
bined in the following twomanners: (i) divide the sample space, specifically the [0, 1] interval,
into n strata and pick a pair of antithetic samples within each strata; or (ii) pick n-strata sam-
ples for half of the sample space and generate n antithetic samples for the other half.

5 Simulation

In this section, we evaluate Algorithms 2 and 4 on three benchmarks from PRISM [8].
Bounded Retransmission Protocol (BRP) [3,5] is a variant of the Alternating Bit Protocol for
sending a large file in N chunks. The maximal number of retransmissions for each chunk is
MAX. We refer to [5] for the details of the protocol and use the PRISM implementation at
http://www.prismmodelchecker.org/casestudies/brp.php.
Crowds Protocol (CP) [13,18,19] provides a mechanism for anonymous web brows-
ing by “blending into a crowd”. We use the PRISM implementation of the protocol at
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http://www.prismmodelchecker.org/casestudies/crowds.php. The size parameters of the
models are TotalRuns, which is the total number of protocol runs to analyze, and
CrowdSize, which is the actual number of good crowd members.
EGL Contract Signing Protocol (EGL) [4,12] is a randomized protocol for signing contracts.
It provides fair data exchange, where either all participants obtain what they want, or none do.
We use the PRISM implementation of the protocol at http://www.prismmodelchecker.org/
casestudies/contract_egl.php. The size parameters of the models are N, which is the number
of pairs of secrets, and L, which is the number of bits in each secret.

We implemented Algorithms 2 and 4 in Java and their average running times and
sample costs are given in Figs. 3, 4, and 5 with comparisons to existing methods. The
sample paths were drawn directly from the PRISM simulator. All experiments were
run on Ubuntu 18.04 with i7-8700 CPU 3.2GHz and 16GB memory. We checked the
specifications P<0.39F[0,99](s = 3) for BRP, P<0.15F[0,99](observe0 > 1) for CP,
and P<0.51F[0,99](¬kA ∧ kB) for EGL, and refer to https://www.prismmodelchecker.org/
casestudies for their meanings. The indifference parameter and the confidence parameters for
all the simulations were set to α = β = δ = 10−3 for BRP and EGL, and α = β = δ = 10−4

for CP. Each simulation setup was repeated for 50 times and error bars corresponding to 95%
confidence intervals are shown in Figs. 3, 4 and 5.

We compare the proposed algorithms with five different algorithms in PRISM: the stan-
dard SPRT and four symbolic methods. The symbolic methods are different in the way that
a transition probability matrix is represented, i.e., multi terminal binary decision diagram
(MTBDD), sparse matrix, hybrid (developed to overcome the inefficiencies with MTBDD),
and explicit matrix1. For all methods, we compare their running time; and for statistical
methods, the sample costs are also compared. The running time limit of each algorithm was
set to 30 minutes.

In the simulations, the smallest model has more than 850 000 states and the largest one
has more than 135 × 1012 states. As shown in Figs. 3, 4, and 5, compared to symbolic
methods, the proposed statistical model checking algorithms scale much better, even when
the parameters are set conservatively by α = β = δ = 10−3 or α = β = δ = 10−4. For
the largest models, the symbolic algorithms did not complete, as they ran out of memory for
storing the transition probability matrix, even when memory-saving engines such as Sparse
or Hybrid were used.

As shown in Figs. 3, 4, and 5, for Algorithm 2, different stratification strategies are
evaluated. Specifically, we consider strata sizes m = 1 (which we referred to as GSPRT),
m = 2, m = 16, m = 256, and m = 4096. As discussed in Remark 3, for each m, the
stratification is performed for over one or more time steps. For example for m = 256, we
consider 4 different ways of stratification: 256 strata for 1 time step, denoted by 2561; 2 strata
for 8 consecutive time steps, denoted by 28; and similarly for 44 and 82.

The simulation results show that using more strata in one step results in a smaller number
of total samples. Using a well-chosen number of strata can significantly reduce the average
number of samples. For example, in Fig. 3a, using 40961 strata reduces the average number
of samples from about 134 800 to 28 300 (4.76 times smaller). In Fig. 4, the reduction for
40961 strata is still about 30%. In Fig. 5d, a significant reduction of 150 times is observed
for 40961 strata.

Generally, the sample costs decrease as the number of strata increases. For example,
increasing the number of strata from 2 to 256 significantly reduces the sample costs in Fig. 3,
and similarly for increasing the number of strata from 256 to 4096 in Fig. 4. However,

1 We did not use the ‘Exact’ engine, since it does not support bounded U formulas
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(a)

(b)

(c)

(d)

Fig. 3 Bounded retransmission protocol
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(a)

(b)

(c)

(d)

Fig. 4 Crowds protocol
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(a)

(b)

(c)

(d)

Fig. 5 EGL contract signing protocol
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over-stratification can be harmful as it increases the minimum number of samples N in
Algorithms 2 and 4. For example, in Fig. 5 the number of samples needed for SPRT is about
500, so increasing the number of strata to 256 makes N larger than needed. In these cases,
the sample costs are exactly N . For better visualization, we do not show results for strata
size 4096 in Fig. 5. Finally, the comparison of the results for Algorithm 2 and Algorithm 4
shows that the efficiency of antithetic samples is similar to 2-strata samples.

6 Conclusion

In this work, we discussed the advantage of using stratified and antithetic samples to sta-
tistically verify Probabilistic Computation Tree Logic (PCTL) formulas on discrete-time
Markov chains (DTMCs). We showed that by properly choosing the representation of the
DTMCs, semantically negatively correlated samples can be generated for a fraction of PCTL
formulas using the stratified or antithetic sampling techniques. Based on this, we proposed
statistical verification algorithms with asymptotic correctness guarantees using stratified or
antithetic samples, and demonstrated that these algorithms are more sample-efficient than
the algorithms using independent Monte Carlo sampling. The experiments showed that our
proposed algorithms use 30%–60% fewer samples (number of strata × number of blocks of
stratified samples) than existing independent-samples methods, for a given confidence level
on the benchmark examples.

Acknowledgements This work was supported by NSF CPS Grant 1329991 and AFOSR Grant FA9550-15-
1-0059.
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