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Abstract— Probabilistic Computation Tree Logic (PCTL) is
frequently used to formally specify control objectives such
as probabilistic reachability and safety. In this work, we
focus on model checking PCTL specifications statistically on
Markov Decision Processes (MDPs) by sampling, e.g., checking
whether there exists a feasible policy such that the probability
of reaching certain goal states is greater than a threshold.
We use reinforcement learning to search for such a feasible
policy for PCTL specifications, and then develop a statistical
model checking (SMC) method with provable guarantees on its
error. Specifically, we first use upper-confidence-bound (UCB)
based Q-learning to design an SMC algorithm for bounded-
time PCTL specifications, and then extend this algorithm to
unbounded-time specifications by identifying a proper trunca-
tion time by checking the PCTL specification and its negation
at the same time. Finally, we evaluate the proposed method by
case studies.

I. INTRODUCTION

Probabilistic Computation Tree Logic (PCTL) is fre-
quently used to formally specify control objectives such as
reachability and safety on probabilistic systems [1]. To check
the correctness of PCTL specifications on these systems,
model checking methods are required [2]. Although model
checking PCTL by model-based analysis is theoretically
possible [1], it is not preferable in practice when the system
model is unknown or large, and model checking by sampling,
i.e. statistical model checking (SMC), is needed [3].

The statistical model checking of PCTL specifications on
Markov Decision Processes (MDPs) is frequently encoun-
tered in many decision problems – e.g., for a robot in a
grid world under probabilistic disturbance, checking whether
there exists a feasible control policy such that the probability
of reaching certain goal states is greater than a probability
threshold [4]–[8]. In these problems, the main challenge is to
search for such a feasible policy for the PCTL specifications.

To search for feasible policies for temporal logics speci-
fications, such as PCTL, on MDPs, one approach is model-
based reinforcement learning [9]–[12] – i.e., first inferring
the transition probabilities of the MDP by sampling over each
state-action pair, and then searching for the feasible policy
via model-based analysis. This approach is often inefficient,
since not all transition probabilities are relevant to the PCTL
specification of interest. Here instead, we adopt a model-free
reinforcement learning approach [13].
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Common model-free reinforcement learning techniques
cannot directly handle temporal logic specifications. One
solution is to find a surrogate reward function such that
the policy learned for this surrogate reward function is the
one needed for checking the temporal logic specification of
interest. For certain temporal logics interpreted under special
semantics (usually involving a metric), the surrogate reward
can be found based on that semantics [14]–[16].

For temporal logics under the standard semantics [17], the
surrogate reward functions can be derived via constructing
the product MDP [8], [18], [19] of the initial MDP and
the automaton realizing the temporal logic specification.
However, the complexity of constructing the automaton
from a general linear temporal logic (LTL) specification
is double exponential [17], [20]. For a fraction of LTL,
namely LTL/GU, the complexity is exponential [21], [22].
In addition, the size of the product MDP is usually much
larger than the initial MDP, although the produce MDP may
be constructed on-the-fly to reduce the extra computation
cost, as it did in [19].

In this work, we propose a new statistical model checking
method for PCTL specifications on MDPs. For a lucid dis-
cussion, we only consider non-nested PCTL specifications.
PCTL formulas in general form with nested probabilistic
operators can be handled in the standard manner using
the approach proposed in [23]. Our method uses upper-
confidence-bound (UCB) based Q-learning to directly learn
the feasible policy of PCTL specifications, without construct-
ing the product MDP. The effectiveness of UCB-based Q-
learning has been proven for the K-bandit problem, and has
been numerically demonstrated on many decision-learning
problems on MDPs (see [24]).

For finite-horizon PCTL specifications, we treat the sta-
tistical model checking problem as a finite sequence of
K-bandit problems and use the UCB-based Q-learning to
learn the desirable decision at each time step. For infinite-
horizon PCTL specifications, we look for a truncation time
to reduce it to a finite-horizon problem by checking the
PCTL specification and its negation at the same time. Our
statistical model checking algorithm is online; it terminates
with probability 1, and only when the statistical error of the
learning result is smaller than a user-specified value.

The rest of the paper is organized as follows. The prelim-
inaries on labeled MDPs and PCTL are given in Section II.
In Section III, using the principle of optimism in the face
of uncertainty, we design Q-learning algorithms to solve
finite-time and infinite-time probabilistic satisfaction, and
give finite sample probabilistic guarantees for the correctness
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of the algorithms. We implement and evaluate the proposed
algorithms on several case studies in Section IV. Finally, we
conclude this work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

The set of integers and real numbers are denoted by N
and R, respectively. For n ∈ N, let [n] = {1, . . . , n}. The
cardinality of a set is denoted by | · |. The set of finite-length
sequences taken from a finite set S is denoted by S∗.

A. Markov Decision Process

A Markov decision process (MDP) is a finite-state prob-
abilistic system, where the transition probabilities between
the states are determined by the control action taken from a
given finite set. Each state of the MDP is labeled by a set
of atomic propositions indicating the properties holding on
it, e.g., whether the state is a safe/goal state. Formally, an
MDP is a tuple M = (S,A,T,AP, L) where
• S is a finite set of states.
• A is a finite set of actions.
• T : S×A×S → [0, 1] is a partial transition probability

function. For any state s ∈ S and any action a ∈ A,∑
s′∈S

T(s, a, s′) =

{
0, if a is not allowed on s
1, otherwise.

With a slight abuse of notation, let A(s) be the set of
allowed actions on the state s.

• AP is a finite set of labels.
• L : S → 2AP is a labeling function.

A policy Π : S∗ → A decides the action to take from the
sequence of states visited so far. Given a policy Π and an
initial state s ∈ S, the MDPM becomes purely probabilistic,
denoted by MΠ,s. The system MΠ,s is not necessarily
Markovian.

B. Probabilistic Computation Tree Logic

The probabilistic computation tree logic (PCTL) is defined
inductively from atomic propositions, temporal operators,
and probability operators. It reasons about the probabilities
of time-dependent properties. Let AP be a set of atomic
propositions. A PCTL (state) formula is defined by

φ ::=a | ¬φ | φ1 ∧ φ2 | Pmin
onp (Xφ) | Pmax

onp (Xφ)

| Pmin
onp (φ1UTφ2) | Pmax

onp (φ1UTφ2)

| Pmin
onp (φ1RTφ2) | Pmax

onp (φ1RTφ2)

where a ∈ AP, on∈ {<,>,≤,≥}, T ∈ N∪{∞} is a (possi-
bly infinite) time horizon, and p ∈ [0, 1] is a threshold.1 The
operators Pmin

onp and Pmax
onp are called probability operators,

and the “next”, “until” and “release” operators X, UT , RT

are called temporal operators. More temporal operators can
be derived by composition: for example, “or” is φ1 ∨ φ2 ::=
¬(¬φ1 ∧ ¬φ2); “true” is True = a ∨ (¬a); “finally” is
FTφ ::= TrueUTφ; and “always” is GTφ ::= FalseRTφ.

1This logic is a fraction of PCTL∗ from [17].

For simplicity, we write U∞, R∞, F∞ and G∞ as U, R,
F and G, respectively.

For an MDPM = (S,A,T, sinit,AP, L), the satisfaction
relation |= is defined by for a state s ∈ S or an (infinite)
path σ : N→ S by

s |= a iff a ∈ L(s),

s |= ¬φ iff s 6|= φ,

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2,

s |= Pmin
onp (Xφ) iff min

Π
Pσ∼MΠ,s

[
σ |= Xφ

]
on p,

s |= Pmax
onp (Xφ) iff max

Π
Pσ∼MΠ,s

[
σ |= Xφ

]
on p,

s |= Pmin
onp (φ1UTφ2) iff min

Π
Pσ∼MΠ,s

[
σ |= φ1UTφ2

]
on p,

s |= Pmax
onp (φ1UTφ2) iff max

Π
Pσ∼MΠ,s

[
σ |= φ1UTφ2

]
on p,

s |= Pmin
onp (φ1RTφ2) iff min

Π
Pσ∼MΠ,s

[
σ |= φ1RTφ2

]
on p,

s |= Pmax
onp (φ1RTφ2) iff max

Π
Pσ∼MΠ,s

[
σ |= φ1RTφ2

]
on p,

σ |= Xφ iff σ(1) |= φ,

σ |= φ1UTφ2 iff ∃i ≤ T. σ(i) |= φ2 ∧
(
∀j < i. σ(i) |= φ1

)
,

σ |= φ1RTφ2 iff σ 6|= ¬φ1UT¬φ2

where on∈ {<,>,≤,≥}. And σ ∼ MΠ,s means the path
σ is drawn from the MDP M under the policy Π, starting
from the state s from. For example, the PCTL formulas s |=
Pmax

onp (Xφ) (or s |= Pmin
onp (Xφ)) mean that the maximal (or

minimal) satisfaction probability of “next” φ is on p. The
formulas s |= Pmax

onp (φ1UTφ2) (or s |= Pmin
onp (φ1UTφ2))

mean that the maximal (or minimal) satisfaction probability
that φ1 holds “until” φ2 holds is on p.

III. CHECKING NON-NESTED PCTL FORMULAS

In this work, we consider the statistical model checking
of non-nested PCTL formulas using an upper-confidence-
bound based Q-learning (nested ones can be handled follow-
ing [23]). For simplicity, we focus on Pmax

onp (a1UT a2) and
Pmax

onp (a1RT a2), where a1 and a2 are atomic propositions;
other cases can be handled in the same way. Following
previous works [3], we make the following assumption.

Assumption 1: For s |= Pmax
onp (a1UT a2) and s |= Pmax

onp
(a1RT a2) with T ∈ N ∪ {∞} and on∈ {<,>,≤,≥},
we assume that maxΠ Pσ∼MΠ,s

[
σ |= φ1UTφ2

]
6= p and

maxΠ Pσ∼MΠ,s

[
σ |= φ1RTφ2

]
6= p, respectively.

From Assumption 1, as the number of samples increases,
the samples will concentrate on one side of the threshold
p by the central limit theorem, so any significance level
(¿0) is achievable. Compared to previous works based on
sequential probability ratio tests (SPRT) [6], [7], [25], we
require no assumption on the indifference region. Finally,
by Assumption 1, we have the additional semantic equiva-
lence between the PCTL formulas: Pmax

<p ψ ≡ Pmax
≤p ψ and

Pmax
>p ψ ≡ Pmax

≥p ψ; we will not distinguish between them.
For further discussion, we first identify a few trivial cases.

For s |= Pmax
>p (a1UT a2), let

S0 = {s ∈ S | a1 /∈ L(s), a2 /∈ L(s)}
S1 = {s ∈ S | a2 ∈ L(s)}.

(1)
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Then for any policy Π, Pσ∼MΠ,s

[
σ |= φ1UTφ2

]
= 0 if

s ∈ S0; and Pσ∼MΠ,s

[
σ |= φ1UTφ2

]
= 1 if s ∈ S1. The

same holds for s |= Pmax
>p (a1RT a2) by defining S1 to be

the union of end components of the MDP M labeled by a2

(this only requires knowing the topology of M) [17]. In the
rest of this section, we focus on handling the nontrivial case
s ∈ S\(S0 ∪ S1) for different values of T .

A. Single Time Horizon

When T = 1, for any s ∈ S\(S0∪S1), the PCTL formula
a1UT a2 (or a1RT a2) holds on a random path σ : N → S
starting from the state s if and only if σ(1) ∈ S1, where S0

and S1 are from (1). So it suffices to learn from samples if

max
a∈A(s)

Q1(s, a) > p, (2)

where Q1(s, a) = Pσ(1)∼T (s,a,·)
σ(0)=s

[
σ |= φ1U1φ2

]
and σ(1) ∼

T (s, a, ·) means σ(1) is drawn from the transition probability
T (s, a, ·) for state s and action a. This is an |A(s)|-arm
bandit problem; we solve this problem by upper-confidence-
bound strategies [26]. Specifically, for the iteration k, let
N (k)(s, a, s′) be the number samples for the one-step path
(s, a, s′). With a slight abuse of notation, let

N (k)(s, a) =
∑
s′∈S

N (k)(s, a, s′). (3)

The unknown transition probability function T(s, a, s′) is
estimated by the empirical transition probability function

T̂(k)(s, a, s′) =

{
N(k)(s,a,s′)
N(k)(s,a)

, if N (k)(s, a) > 0,
1
|S| , if N (k)(s, a) = 0.

(4)

The estimation of Q1(s, a) from the existing k samples is

Q̂
(k)
1 (s, a) =

∑
s′∈S1

T̂(k)(s, a, s′). (5)

Since the value of the Q-function Q1(s, a) ∈ [0, 1] is
bounded, we can construct a confidence interval for the esti-
mate Q̂(k)

1 with statistical error at most δ using Hoeffding’s
inequality by

Q(k)

1
(s, a) = max

{
Q̂

(k)
1 (s, a)−

√
| ln(δ/2)|

2N (k)(s, a)
, 0

}
,

Q
(k)

1 (s, a) = min

{
Q̂

(k)
1 (s, a) +

√
| ln(δ/2)|

2N (k)(s, a)
, 1

}
,

(6)

where we set the value of the division to be ∞ for
N (k)(s, a) = 0.

Remark 1: We use Hoeffding’s bounds to yield hard
guarantees on the statistical error of the model checking
algorithms. Tighter bounds like Bernstein’s bounds [27] and
Massart’s bounds [28], [29] can also be used, but they only
yield asymptotic guarantees on the statistical error.

The sample efficiency for learning for the bandit prob-
lem (2) depends on the choice of sampling policy, decided
from the existing samples. We use the Q-learning from [26].
Specifically, an upper confidence bound (UCB) is constructed

Algorithm 1 SMC of s |= Pmax
>p (a1U1a2) or s |=

Pmax
>p (a1R1a2)

Require: MDP M, parameter δ.
1: Initialize the Q-function, and the policy by (8)(7).
2: Obtain S0 and S1 by (1).
3: while True do
4: Sample from M, and update the transition probabil-

ity function by (3)(4).
5: Update the bounds on the Q-function and the policies

by (6)(7).
6: Check termination condition (9).
7: end while

for each state-action pair using the number of samples and
the observed reward, and the best action is chosen with the
highest possible reward, namely the UCB. The sampling
policy is chosen by maximizing the possible reward greedily:

π
(k)
1 (s) = argmaxa∈A(s)Q

(k)

1 (s, a). (7)

The action is chosen arbitrarily when there are multiple
candidates. The choice of π(k)

1 in (7) ensures that the policy
giving the upper bound of the value function gets most
frequently sampled in the long run.

To initialize the iteration, the Q-function is set to

Q
(0)

1 (s, a) =

{
1, if s /∈ S0,

0, otherwise,
Q(0)

1
(s, a) =

{
1, if s ∈ S1,

0, otherwise,
(8)

to ensure that every state-action is sampled at least once. The
termination condition of the above algorithm is

true, if maxa∈A(s)Q
(k)

1
(s) > p,

false, if maxa∈A(s)Q
(k)

1 (s) < p,

continue, otherwise,

(9)

where p is from (2).
Remark 2: To handle s |= Pmax

<p (a1U1a2) or s |= Pmax
<p

(a1R1a2), it suffices to change the termination condition (9)
by returning true if Q

(k)

1 (s) < p, and returning false if
Q(k)

1
(s) > p. The same statements hold for general PCTL

formulas, as discussed in Sections III-B and III-C

B. Finite Time Horizon

When T ∈ N, for any s ∈ S\(S0 ∪ S1), let

Vh(s) = max
Π

Pσ∼MΠ,s
(σ |= a1Uha2),

Qh(s, a) = max
Π(s)=a

Pσ∼MΠ,s(σ |= a1Uha2), h ∈ [T ],

(10)

i.e., Vh(s) and Qh(s, a) are the maximal satisfaction proba-
bility of a1Uha2 for a random path starting from s for any
policy and any policy with first action being a, respectively.
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Then Vh(s) and Qh(s, a) satisfy the Bellman equation

Vh(s) = max
a∈A

Qh(s, a),

Qh+1(s, a) =
∑
s′∈S

T(s, a, s′)Vh(s′)

=
∑

s∈S\(S0∪S1)

T(s, a, s′)Vh(s′) +
∑
s′∈S1

T(s, a, s′).

(11)

The second equality of the second equation is derived from

Vh(s) =

{
0, if s ∈ S0,

1, if s ∈ S1.

From (11), we check Pmax
>p (a1Uha2) by induction on the

time horizon T . For h ∈ T , the lower and upper bounds
for Qh(s, a) can be derived using the bounds on the value
function for the previous step: for h = 1 from (6) and for
h > 0 by the following.

Q(k)

h+1
(s, a) = max

{
0,

∑
s∈S\(S0∪S1)

T̂(k)(s, a, s′)V h(s′)+

∑
s′∈S1

T̂(k)(s, a, s′)−

√
| ln(δh/2)|
2N (k)(s, a)

}
,

Q
(k)

h+1(s, a) = max

{
1,

∑
s∈S\(S0∪S1)

T̂(k)(s, a, s′)V h(s′)+

∑
s′∈S1

T̂(k)(s, a, s′) +

√
| ln(δh/2)|
2N (k)(s, a)

}
,

(12)

and

V
(k)

h (s) = max
a∈A(s)

Q
(k)

h (s, a), V
(k)
h (s) = max

a∈A(s)
Q(k)

h
(s, a),

(13)

where δh is a parameter such that Qh(s, a) ∈ [Q(k)

h
(s, a),

Q
(k)

h (s, a)] with probability at least 1 − δh. The bounds
in (12) are derived from (11) by applying Hoeffding’s
inequality, using the fact that E[T̂(k)(s, a, s′)] = T(s, a, s′)
and the Q-functions are bounded within [0, 1].

By the boundedness of Qh(s, a) ∈ [0, 1], we note that this
confidence interval encompasses the statistical error in both
the estimated transition probability function T̂(k)(s, a, s′)

and the bounds V
(k)

h (s, a) and V
(k)
h (s, a) of the value

function. So the policy π(k)
h chosen at the h step is

π
(k)
h (s) = argmaxa∈A(s)Q

(k)

h (s, a), (14)

with an optimal action chosen arbitrarily when there are
multiple candidates, to ensure that the policy giving the upper
bound of the value function is sampled the most in the long
run. To initialize the iteration, the Q-function is set to

Q
(0)

h (s, a) =

{
1, if s /∈ S0

0, otherwise,
Q(0)

h
(s, a) =

{
1, if s ∈ S1

0, otherwise,
(15)

Algorithm 2 SMC of s |= Pmax
>p (a1UT a2) or s |=

Pmax
>p (a1RT a2)

Require: MDP M, parameters δh for h ∈ [T ].
1: Initialize the Q-function and the policy by (15)(14).
2: Obtain S0 and S1 by (1).
3: while true do
4: Sample by (16), and update the transition probability

function by (3)(4).
5: Update the bounds by (12)(13) and the policy

by (14).
6: Check the termination condition (17).
7: end while

for all h ∈ [T ], to ensure that every state-action is sampled
at least once.

Sampling by the updated policy π(k)
h (s) can be performed

in either episodic or non-episodic ways [24]. The only
requirement is that the state-action pair (s, π

(k)
h (s)) should

be performed frequently for each h ∈ [T ] and for each state
s satisfying s ∈ S\(S0 ∪ S1). In addition, batch samples
may be drawn, namely sampling over the state-action pairs
multiple times before updating the policy. In this work,
for simplicity, we use a non-episodic, non-batch sampling
method, by drawing

s′ ∼ T(s, π
(k)
h (s), ·), (16)

for all h ∈ [T ] and state s such that a1 ∈ L(s), a2 /∈ L(s).
The Q-function and the value function are set and initialized
by (13) and (15). The termination condition is give by

Pmax
>p φ :


false, if V

(k)

H (s0) < p,

true, if V (k)
H (s0) > p,

continue, otherwise,

(17)

where p is the probability threshold in the non-nested PCTL
formula. The above discussion is summarized by Algorithm 2
and Theorem 1.

Theorem 1: Algorithm 2 terminates with probability 1
and its return value is correct with probability at least
1−N |A|

∑
h∈[T ] δh, where N = |S\(S0 ∪ S1)|.

By Theorem 1, the desired overall statistical error splits
into the statistical errors for each state-action pair through the
time horizon. For implementation, we can split it equally by
δ1 = · · · = δH . The formula Pmin

onp (φ) can be handled by
replacing argmax with argmin in (14), and max with min
in (13). The termination condition is the same as (17).

Remark 3: From the semantics of PCTL, running Algo-
rithm 2 proving Pmax

>p (φ) or disproving Pmax
<p (φ) is easier

than disproving Pmax
>p (φ) or proving Pmax

<p (φ); and the
difference increases with the number of actions |A| and
the time horizon T . This is because proving Pmax

>p (φ) or
disproving Pmax

<p (φ) requires only finding and evaluating
some policy Π with PMΠ

[s |= φ] > p, while disproving
it requires evaluating all possible policies with sufficient ac-
curacy. This is illustrated by the simulation results presented
in Section IV.
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Algorithm 3 SMC of s |= Pmax
>p (a1Ua2)

Require: MDP M, parameters δh for h ∈ N.
1: Initialize two sets of Q-function and the pol-

icy by (15)(14) for (i) Pmax
>p (a1Ua2) and (ii)

Pmin
>1−p(¬a1R¬a2), respectively.

2: Obtain S0 and S1 for (i) and (ii) respectively by (1).
3: while True do
4: Sample by (16), and update T̂(k)(s, a, s′) by (3)(4).
5: Update the bounds on the Q-function, the poli-

cies, the value function, and the time horizon
by (12)(14)(13)(20) respectively for (i) and (ii).

6: Check the termination condition (19).
7: end while

C. Infinite Time Horizon

Infinite-step satisfaction probability can be estimated from
finite-step satisfaction probabilities, using the monotone con-
vergence of the value function in the time step H ,

V0(s) ≤ . . . ≤ VH(s) ≤ . . . ≤ V (s) = lim
H→∞

VH(s). (18)

Therefore, if the satisfaction probability is larger than p for
some step H , then the statistical model checking algorithm
should terminate, namely,{

false, if V (k)
H (s0) > p,

continue, otherwise.
(19)

If we check both Pmax
>p (a1Ua2) and its negation Pmin

>1−p(¬a1

R¬a2) simultaneously, then one of them should terminate in
finite time. The termination in finite time is guaranteed, if
the time horizon for both computations increases.

We use the convergence of the best policy as the criterion
for increasing the time step H for checking the formula or
its negation. For each H , besides finding the optimal policy
π

(k)
H (s) for the upper confidence bounds of the Q-functions
Q

(k)

H (s, a) by (14), we also consider the optimal policy for
the lower confidence bounds of the Q-functions Q(k)

H
(s, a).

Obviously, when π(k)
H (s) ∈ argmaxa∈AQ

(k)

H
(s, a), we know

that the policy π(k)
H (s) is optimal for all possible Q-functions

within [Q(k)

H
, Q

(k)

H ]. This implies that these bounds are fine
enough for estimating QH ; thus, if the algorithm does not
terminate by the condition (19), we let

H ←


1, initially,
H + 1, if π(k)

H (s) ∈ argmaxa∈AQ
(k)

H
(s, a)

for all s ∈ S,
Continue, otherwise.

(20)

Combining the above procedure, we derive Algorithm 3 and
Theorem 2 below for statistically model checking PCTL
formula Pmax

>p (a1Ua2).
Theorem 2: Algorithm 3 terminates with probability 1

and its return value is correct with probability 1 −
|A|max{N1, N2}

∑
h∈[T ] δh, where H is the largest time

horizon when the algorithm stops, N1 = |S\(Sφ0 ∪S
φ
1 )| and

N2 = |S\(Sψ0 ∪ S
ψ
1 )| with Sφ0 ∪ S

φ
1 and Sψ0 ∪ S

ψ
1 derived

from (1) for φ = a1Ua2 and ψ = a1Ra2, respectively.
Remark 4: By Theorem 2, given the desired overall con-

fidence level δ, we can split it geometrically by δh =
(1− λ)λh−1δ, where λ ∈ (0, 1).

Remark 5: Similar to Section III-B, checking Pmin
∼p (φ)

for ∼∈ {<,>,≤,≥} is derived by replacing argmax with
argmin in (14), and max with min in (13). The termination
condition is the same as (19).

Remark 6: Finally, we note that the exact savings of
sample costs for Algorithms 2 and 3 depend on the structure
of the MDP. Specifically, the proposed method is more
efficient than [10], [11], when the satisfaction probabilities
differ significantly among actions, as it can quickly detect
sub-optimal actions without over-sampling on them. On the
other hand, if all the state-action pairs yield the same Q-
value, then an equal number of samples will be spent on
each of them — in this case, the sample cost of Algorithms 2
and 3 is the same as [10], [11].

IV. SIMULATION

We implement Algorithms 2 and 3 in Scala on Ubuntu
18.04 with i7-8700 CPU 3.2GHz and 16GB memory. They
are evaluated on two sets of MDPs with known topology
but unknown transition probabilities (different from [10]) on
10 randomly generated MDPs with different sizes, where
we check a finite-horizon formula Pmax

<p (α1UHα2) and an
infinite-horizon formula Pmax

<p (α1Uα2) for some given α1

and α2. For each MDP, we test two different thresholds p
with the (nominal) significance level δ = 0.05. To estimate
the average running time and number of iterations for, we
repeated each model checking task for 100 times. For each
task, the repeated runs return the same answers, showing
that the actual significance level of the proposed algorithms
is much smaller than 0.05; this is because of the conserva-
tiveness of the Hoeffding’s bounds used in the algorithms All
the checking results agree with the satisfaction probabilities
from PRISM [30], which requires the transition probabilities
of the MDP (so we do not compare the running time).

Table I show the results for finite horizons. In all examples,
returning “False” is 3 to 100 times faster than returning
“True”. We believe this is because, to return “False”, the
algorithm only needs to find a falsifying policy; but to return
“True”, it needs to check for all policies (see Remark 3).
Table II show the results for infinite horizons. Since Algo-
rithm 3 checks both the formula and its negation, returning
“False” is not faster than returning “True”. For larger MDPs,
the time steps H1 and H2 needed to model check the formula
and its negation (updated by (20)) are very small on average,
showing that the algorithm can quickly decide that there is
no need to increase the time horizon to solve the problem.

V. CONCLUSION

We proposed a statistical model checking method for
Probabilistic Computation Tree Logic on Markov decision
processes using reinforcement learning. We first checked
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|S| |A| H p PRISM Ans. Iter. Time (s)
3 3 4 0.25 0.35 False 208.5 0.02

4 0.45 True 3528.7 0.19
4 2 4 0.09 0.19 False 171.8 0.01

4 0.29 True 3671.7 0.22
5 2 4 0.05 0.11 False 441.7 0.04

4 0.21 True 4945.5 0.42
10 2 4 0.04 0.09 False 544.7 0.14

4 0.19 True 5193.3 1.45
15 2 3 0.04 0.09 False 873.1 0.28

3 0.19 True 4216.7 1.28
20 4 5 0.12 0.22 False 337.6 0.99

5 0.32 True 9353.3 28.06
25 5 10 0.09 0.19 False 270.5 7.57

10 0.29 True 25709.8 728.49
30 5 10 0.08 0.17 False 355.6 14.35

10 0.27 True 27161.7 1085.77
35 5 10 0.09 0.18 False 328.9 18.82

10 0.28 True 27369.6 1529.84
40 5 10 0.08 0.16 False 390.0 26.79

10 0.26 True 30948.8 2122.24

TABLE I
CHECKING Pmax

<p (α1UHα2). “ANS.” IS RETURN OF ALGORITHM 2.
“ITER.” IS AVERAGE NUMBER OF ITERATIONS. “PRISM” IS PRISM’S

ESTIMATION OF SATISFACTION PROBABILITY.

|S| |A| p PRISM Ans. H1 H2 Iter. Time (s)
3 3 0.25 0.35 False 14.7 15.8 126.0 0.03

0.45 True 12.9 13.0 111.3 0.01
4 2 0.09 0.19 False 13.0 27.2 103.7 0.01

0.29 True 9.6 19.2 73.0 0.01
5 2 0.05 0.11 False 12.4 59.3 239.9 0.06

0.21 True 6.9 24.3 92.7 0.00
10 2 0.04 0.09 False 3.2 225.6 891.4 0.24

0.19 True 1.1 21.5 79.6 0.00
15 2 0.04 0.09 False 1.3 117.8 1862.0 0.61

0.19 True 1.0 11.0 161.3 0.01
20 4 0.12 0.22 False 1.0 1.0 1336.2 0.27

0.32 True 1.0 1.8 16843.8 3.02
25 5 0.09 0.19 False 1.0 1.0 1619.2 0.64

0.29 True 1.0 2.0 154621.6 56.56
30 5 0.08 0.17 False 1.0 1.0 2246.8 1.05

0.27 True 1.0 1.3 86617.0 42.53
35 5 0.09 0.18 False 1.0 1.0 1925.1 0.82

0.28 True 1.0 1.0 13219.0 5.79
40 5 0.08 0.16 False 1.0 1.0 2401.5 1.35

0.26 True 1.0 1.0 12158.6 6.66

TABLE II
CHECKING Pmax

<p (α1Uα2). H1 AND H2 ARE THE TIME STEPS NEEDED

TO MODEL CHECK THE FORMULA AND ITS NEGATION, UPDATED BY (20).

PCTL formulas with bounded time horizon, using upper-
confidence-bounds based Q-learning, and then extended the
technique to unbounded-time specifications by finding a
proper truncation time by checking the specification of
interest and its negation at the same time. Finally, we
demonstrated the efficiency of our method by case studies.
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