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1 Abstract

Computational materials simulation and modeling has emerged as a cornerstone of materials sci-
ence research. At the University of Illinois at Urbana-Champaign, our faculty team in the Depart-
ment of Materials Science and Engineering (MatSE), as part of the Strategic Instructional Ini-
tiatives Program (SIIP) of the university, have integrated comprehensive computational modules
into multiple MatSE undergraduate classes and have created a collaborative teaching environment
to iteratively improve these modules. Each year, a dedicated teaching assistant has been involved
to communicate between faculty members, ensure the quality of the computational modules, as-
sist in their delivery, and offer supplementary computational office hours. After three years of
effort, we have now established a stable environment for computational education within MatSE
undergraduate classes. The students initially involved in the program are now approaching their
senior years. In this paper, we present the recent progress of our computational curriculum and
focus on the influence of the program on the performance of students in senior computational
modeling classes and senior classes with computational modules.

2 Introduction

Computational modeling of materials properties has grown increasingly important in both academia
and industry.[1] Survey data from 2009 shows that the an average of 50 % of new hires are ex-
pected to have computational training experience. [1] Due to the well-known need of computa-
tional skills, it is vital to provide computational training to undergraduate students in materials



science.[1, 2] A recent study by Vieira and others[3] shows that integrating computational con-
tents to a thermodynamics class not only increases students’ understanding of the class materials,
but also increases their confidence of doing computational simulations overall.

In the Department of Materials Science and Engineering at the University of Illinois at Urbana-
Champaign, our faculty team has developed a program to integrate computational modules into
existing core classes of the undergraduate curriculum. With such a scheme, we provide computa-
tional training without adding additional classes to the curriculum.[4, 5] In this paper, we report
recent progress of this program, we analyze feedback obtained from the students, and we discuss
the impact of the program on senior-level elective classes that focus entirely on computational
skills.

3 Curricular Reform and Computational Modules

The Strategic Instructional Initiatives Program (SIIP) is inspired by Henderson et al. [6–9] and
discussed in Refs. [4, 5, 10] The SIIP program aims to establish a collaborative teaching envi-
ronment to enhance instruction, and is aimed primarily at core classes with large enrollments. In
this context, we created a collaborative platform in the MatSE department, targeting a series of
classes ranging from 200-level sophomore classes that are a required part of the curriculum, to
400-level senior electives. In all classes, two to three computational modules are implemented.
To ensure the quality of the module, a dedicated graduate student teaching assistant is trained in
educational delivery of computational materials science content[11] through direct mentoring
from the faculty team and attendance at the Summer School for Integrated Computational Ma-
terials Education (https://icmed.engin.umich.edu/) to provide support for develop-
ment and deployment of the modules. The modules are collaboratively and sustainably developed
within a faculty community of practice anchored by regular meetings, online repositories, and
the shared teaching assistant. The computational modules are incorporated in the classes through
dedicated homework problem problems and discussion of computational material in course lec-
tures. The teaching assistant holds dedicated “computational office hours” in addition to any reg-
ularly scheduled office hours for the course to help students understand and use computational
software packages, and support their use of these packages to solve the computational homework
problems. The computational content is designed to directly engage with the class material, and
the skills and training needed to use computational software is provided by the faculty member
and teaching assistant. In instances where the class instructor may lack expertise in the compu-
tational software, they are provided training by other faculty possessing these expertise, and the
teaching assistant – who has been previously trained – may take the lead in delivering the mate-
rial.

The list of classes and faculty members involved in the program can be found in Table 1 and Ta-
ble 2, respectively. There are a total of nine faculty members currently involved in the program.
We only listed the faculty members who participated in the SIIP program in Spring 2017 and Fall
2017 as the information about previous years can be found in Ref. [5].

After three years of effort, the progress of the program has reached a steady state. This year,
the computational modules of the classes involved remain the same as described in the previous

https://icmed.engin.umich.edu/


Table 1: Classes directly involved in the SIIP program and senior level compu-
tational classes (marked by †) that are potentially affected by the effectiveness
of SIIP program.

Number Name Level Type
201 Phase and Phase Relations Sophomore Required
206 Mechanics for MatSE Sophomore Required
304 Electronic Properties of Materials Junior Semi-required
401 Thermodynamics of Materials Junior Required
402 Kinetic Processes in Materials Junior Required
406 Thermal and Mechanical Behavior of Materials Junior Required
440 Mechanical Behavior of Materials Junior/Senior Semi-required
404† Laboratory Studies in MatSE: Computational MatSE Senior Elective
485† Atomic Scale Simulations Senior Elective

Table 2: SIIP classes and the corresponding faculty members in Spring 2017
and Fall 2017. Marks of † indicate that computational modules are used in the
class.

Class Spring 2017 Fall 2017
201 Shang† Leal†
206 Krogstad† Shang
304 Schleife†
401 Dillon†
402 Bellon†
406 Maass†
440 Krogstad†
404 Ferguson†

report.[5] The computational software packages employed are:

• Quantum Espresso[12] for density functional theory (DFT)

• LAMMPS[13] for molecular dynamics (MD)

• OVITO[14] for atomic visualization

• OOF2[15] for finite element method (FEM)

• Thermo-Calc[16] (CALPHAD) for phase diagrams

• MATLAB[17] for numerical computing

The usage of these different packages in the classes are listed in Table 3. Below, we present the
survey data obtained in the classes that are taught in Fall 2017. As shown in Table 3, even exclud-
ing MSE 404, which is the computation-focused senior elective, the Fall 2017 classes still cover
all modules that we integrated into the curriculum.

As the program matures, it is important to obtain frequent student feedback and to analyze its



Table 3: Computational methods integrated in SIIP classes. Classes marked by
∗ are classes where computational modules are used in Fall 2017 and are the
main source of survey data in this paper.

Course DFT MD FEM CALPHAD MATLAB
201∗ X X
206 X X
304 X
401 X X
402 X X

406∗ X X
440∗ X X
404∗ X X X X X

efficacy and identify areas for improvement. In this paper, we discuss the surveys that we con-
ducted to shed light on aspects including the students’ familiarity and confidence towards the
computational tools, their attitude towards the importance of computational skills, and towards
their satisfaction with the curriculum. These surveys are conducted before students enter a class
and after they finish a class.

The rest of the paper is structured as follows. In section 4, we discuss the impact of the SIIP pro-
gram on the MSE students’ attitude towards computational skills. In section 5, we discuss the
impact of the SIIP program on the senior level classes that focus completely on computational
materials science. We provide further discussion of the importance of more effective feedback in
section 6. In section 7, we present our conclusions and outlook.

4 Impact of the program within core undergraduate classes

In this section, we analyze survey data collected from the core undergraduate SIIP classes to eval-
uate the effectiveness of the SIIP program, and to identify areas for future improvement.

4.1 Earlier exposure to computation

In this section, we show that student feedback indicates a desire for earlier exposure to compu-
tational tools. A survey question in the first class that involves computational modules MSE 201
relates to the desired time to learn computational skills:

• “When do you think it is the best time to learn about computational tools for materials sci-
ence and engineering?”

Figure 1 shows the results of the survey. It shows that after taking the first class with computa-
tional modules in it, student attitude towards the desired time of learning computational skills
shifted to earlier in their curriculum. Before taking MSE 201, students’ exposure to computa-
tional materials science is very limited. Although students have taken CS 101 as a required class,
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Figure 1: The entry-survey and final-survey result of the desired time of learn-
ing computational skills in MSE 201 (“When do you think it is the best time to
learn about computational tools for materials science and engineering?”). The
sample size is 57 in the entry and 49 in the final survey. ment and mfin denote the
mean value of the entry survey and final survey.

no connections to materials sciences have been made as they have never had a formal MatSE
class with computational modules. With this background, the majority of students believes that
learning computational skills in the second year is optimal. However, after completing MSE 201,
the average of the time which student think is the best to learn computational skills shifted from
1.95 ± 0.08 to 1.61 ± 0.08. It can also be seen from Figure 1 that after finishing MSE 201, the
proportion of students who have chosen 1 in the question doubled. As in this question, option of
1 means freshman year and option of 2 means sophomore year, this decreased average indicates
that students tend to believe that they should learn computational materials science even earlier.
This change in students’ attitude towards the time they should learn computational skills suggests
that we should incorporate computational modules even earlier in the 100-level classes.

4.2 Perception of the importance of computation

In this section, we show that the SIIP program raises the students awareness of the importance of
computational skills. In the surveys we conduct in three different classes, MSE 201, MSE 440,
and MSE 406, there are questions related to the importance of computational skills in materials
science and engineering:

• “In general, do you think computational tools are important for materials science and engi-
neering?”
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Figure 2: Students’ attitude towards the importance of computational tools. The
sample size is 57 for MSE 201, 110 for entry survey of MSE 440+MSE 406,
and 77 for the final survey of the two senior classes. ment and mfin denote the
mean value of the entry survey and final survey.

(MSE 201, entry survey)

• “I think computational materials science skills are important in my post-graduation career.”

(MSE 440, MSE 406, entry and final survey)

Figure 2 shows the results of these surveys. We aggregate responses from MSE 406 and MSE
440 to achieve a better sample size for “400-level classes”. The survey results indicate that the
SIIP program improves student perceptions of the importance of computational skills in the ma-
terials science and engineering discipline. This can be seen in two different ways: (i) by com-
paring the entry-level class to the senior level classes and (ii) the entry-surveys to the final sur-
veys. By comparing the entry survey from MSE 201 and from MSE 440+406, it can be seen that
the students have better awareness of the importance of computational skills when they enter the
400-level classes, compared to when they enter the 200-level class as the average increases from
4.11 ± 0.13 to 4.33 ± 0.08. Furthermore, as students proceed and complete the 400-level classes,
this average further increased from 4.33±0.08 to 4.47±0.10, which indicates that these 400-level
classes themselves further increase the students’ awareness of their importance.

4.3 Fulfillment of computational learning demand

In this section, we analyze the fulfillment of students’ demand of learning computational skills in
their undergraduate study. The survey question we analyze is related to whether the students need
more computational contents in the classes or not:
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Figure 3: Students’ attitude towards the amount of computational content in
MSE classes. The sample size is 57 for MSE 201, 110 for entry survey of MSE
440+406, and 76 for the final survey of the two senior classes. m201 denotes the
mean value of the 201 final survey. m4 ent and m4 fin denote the mean value of
the entry survey and final survey of the 400-level classes.

• “I would like to use computation in my MatSE classes ...”

(MSE 201, final survey; MSE 440 and MSE 406, entry survey and final survey)

Figure 3 shows the results of the surveys. It can be seen from the average that in all three classes,
students reply that they wish to have more computational content. Interestingly, such demand
increases as students complete the 400-level classes. This is another sign that the SIIP program
successfully raises the students’ awareness that computational skills are useful and worthy of
mastering.

5 Impact of the program within senior computational classes

In the senior computational elective class MSE 404, we compared the survey results obtained
this year with those from 2016 to analyze the impact of the SIIP sequence on students taking this
class. The SIIP program was initiated two years ago, so the first group of students who experi-
enced the program are now in their junior or senior years, at which time they may choose to take
elective classes that focus completely on computational materials science. With more exposure
to computational tools during their earlier curriculum, we anticipate that if the SIIP program is
performing well, then these students should have better confidence in computational tools than
students from previous years. Relevant computational tools are Quantum Espresso for density
functional theory (DFT) calculations and LAMMPS for molecular dynamics (MD) calculations



in MSE 404 Micro, and OOF2 for finite element method (FEM) and Thermo-Calc for phase dia-
gram calculations in MSE 404 Macro. These were the survey questions used:

• “How confident are you in using the following computational tools?” (entry survey)

• “How confident do you feel in your ability to go out and independently use the software
packages we have worked with?” (final survey)
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Figure 4: Students’ confidence in computational tools before entering MSE
404. The sample size is 11 for Micro (2017), 13 for Macro (2017), 20 for Micro
(2016), and 12 for Macro (2016).

Table 4: Table of the calculated mean value and p-value of the data for MSE
404 from year 2016 and year 2017.

Year/module mean
2017 DFT 1.91±0.75
2016 DFT 1.5±0.72
2017 MD 2.91±0.48
2016 MD 2.15±0.49

Year/module mean
2017 FEM 2.62±0.41
2016 FEM 2.33±0.49

2017 ThermoCalc 2.23±0.56
2016 ThermoCalc 2.08±0.61

Table 5: Table of the calculated mean value of the final survey data for MSE
404 from year 2016 and year 2017.

Year/module mean
2017 Micro 3.71±0.61
2016 Micro 3.73±0.43
2017 Macro 4.00±0.87
2016 Macro 4.00±0.63

Figure 4 shows the histogram plot of the comparison and Table 4 shows quantitative compari-
son between the two data sets. We also show the students’ confidence in the methods after they
finish MSE 404 in Figure 5. Table 5 shows the quantitative analysis of this data. From Figure 4
and Table 4, we can see that comparing the level of confidence in the tools before entering MSE
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Figure 5: Students’ confidence in computational tools after finishing MSE
404. The sample size is 7 for Micro (2017), 7 for Macro (2017), 15 for Micro
(2016), and 12 for Macro (2016).

404, students this year shows consistently more confidence compared to last year. Furthermore,
as Figure 5 and Table 5 show, the level of confidence after they finish the classes does not differ
much between the last two years. Due to the fact that this class is a senior level optional class, the
sample size is very small thus our data has large error bars. Ways to improve feedback in order to
reduce our uncertainties are discussed in section 6.

Within the senior class MSE 485, the survey questions we show are related to the students famil-
iarity and confidence in the modules before they enter MSE 485:

• “How confident are you in using Mathematica, Matlab, programming language or simula-
tion software to solve problems?”

• “How often do you use (simulation software/programming languages/Matlab/Mathematica)
for solving problems in research or class?

The results of the survey are shown prior to and after SIIP implementation, respectively, in Fig. 6
for Spring 2015 and Fig. 7 for Fall 2017.

The last survey data of the class is from Spring 2015 because MSE 485 is only offered once every
two years in the Materials Science and Engineering Department, alternating this class offering
with the Physics Department. The data indicates that the computational education accrued in pre-
vious materials science classes benefits students by increasing familiarity and confidence with the
simulation tools as they enter MSE 485. The average of the confidence level students have before
entering the class is 3.71 ± 0.19. We notice that for all packages and computational tools that
we have introduced in the SIIP program, the students appear to be much more confident before
entering MSE 485. The average levels of familiarity are 3.00 ± 0.25 for all simulation packages
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Figure 6: Students’ familiarity with computational tools before entering MSE
485 in Spring 2015. The average is 2.30± 0.29 for simulation packages, 3.74±
0.33 for programming languages, 3.55 ± 0.30 for Matlab, and 2.17 ± 0.27 for
Mathematica. The sample size is 23.

(Quantum Espresso, LAMMPS, etc.), 3.85 ± 0.20 for programming languages and 2.76 ± 0.22
for Matlab. Compared with that, students familiarity to Mathematica, which is the tool that is not
implemented into the curriculum, is much lower with an average of 1.85 ± 0.15. Comparing the
results from Spring 2015 to Fall 2017, we can see a large increase of the level of confidence for
simulation packages. As the simulation packages are integrated into MatSE classes exclusively
through the SIIP program, it is likely that we can attribute this increase to the effectiveness of the
SIIP program.

The familiarity of students with other tools do not show strong trends, as there can be other fac-
tors that may affect students’ familiarity and confidence with these different methods. These fac-
tors include the fact that Matlab and programming languages are more widely used in classes in-
volving computation, compared with simulation packages specifically for materials science, and
that in MSE 485 the composition of students is more diverse and includes a substantial fraction of
non-MatSE students and graduate students. Furthermore, students enrolled in MSE 485 are likely
more interested in computational materials science than the overall population due to the nature
of the class, and this factor can also affect students’ familiarity with computational tools.

6 Discussion

Through a longitudinal analysis of class survey data, we have clear evidence that the SIIP pro-
gram is benefiting the students by both increasing their familiarity with simulation tools and
raising their awareness that computational tools are important in materials science. The survey
data also provides useful information about the future work we should put into the program. Such
feedback is crucial to further improve the quality of the SIIP program and of the MSE undergrad-
uate curriculum. In particular, the aggregated survey data suggest two main directions in which to
improve the computational content. First, the desire for earlier exposure to computational tools
suggests that we develop new modules for the freshman classes. Second, the desire for more



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f 
R

es
p

o
n

se

Not confident Confident

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f 
R

es
p

o
n

se

Simulation packages
Programming languages
Matlab
Mathematica

Not familiar Familiar

Figure 7: Students’ confidence and familiarity with computational tools before
entering MSE 485. The average is 3.00 ± 0.25 for simulation packages, 3.85 ±
0.20 for programming languages, 2.76 ± 0.22 for Matlab, and 1.85 ± 0.15 for
Mathematica. The sample size is 41.

computational content in the curriculum as a whole motivates us to incorporate additional MatSE
classes into the SIIP program. In addition, we also have in place a mechanism for continuous re-
vision and improvement of the existing computational modules through an end-of-year debrief
and planning session, in which the SIIP faculty and teaching assistant conduct a “post mortem”
of the computational modules. By identifying aspects of the material, delivery, and student re-
sponses that were positive and successful, and those that were less so, the team identifies how and
where to improve the material and its dissemination for the following year.

The student surveys provide valuable information, but their utility as an assessment instrument
can benefit from further improvement. The sample sizes in the senior level computational classes
are relatively small. Especially in MSE 404, the sample size is only on the order of 10 – 20 stu-
dents each year. This results in a larger estimated standard error in the mean value and makes the
data less reliable.

Furthermore, it is crucial that we develop a more complete and consistent feedback system. There
are several aspects that need to be addressed in the future: First, the current surveys for different
classes lack consistency. Effort should be taken to develop consistent survey questions so that we
can draw more robust conclusions as students proceed through the various classes in the SIIP se-
quence. Second, the manner in which the surveys are administered should be standardized. At
the moment, different instructors employ different methodologies, including i-clicker questions
during class, integrated questions during exams, Scantron surveys in class, and online in-class
feedback. It is important to look for the most efficient and effective way to conduct the surveys
so that we can collect data as completely and uniformly as possible. Third, surveys should be ex-
panded throughout all classes in the department, not just those in the SIIP program. This will be
valuable especially for assessing the influence of the program on senior level students by provid-
ing a larger sample size and eliminating the self-selection sampling bias of which students choose
to enroll in the computational senior electives.

Furthermore, the survey data discussed in this paper contains mostly students opinion and atti-



tude. While this reflects the trend reasonably well, it is largely subjective. In the future, more
objective data, such as information about the grades of the exams/homeworks in both the SIIP
classes and computational focused classes should be included to support the survey data.

7 Conclusion

In this paper, we evaluate the efficacy of the implementation of computational modules into the
MatSE curriculum through critical assessment of student feedback. The feedback illuminates in-
creased student awareness of the importance of computational skills in materials science as they
advance through the undergraduate program. It also suggests a demand for increased computa-
tional content and the delivery of this content earlier in the undergraduate degree program. Feed-
back from senior-level computational classes demonstrates that incorporation of computational
content within the core curriculum measurably increases student familiarity and confidence upon
entering these elective classes, providing strong support for the efficacy of the SIIP program. Fi-
nally, we observe that our feedback mechanism may be improved by enlarging sample sizes, im-
proving consistency of questions and delivery, and supplementing with more objective measures
of performance. In doing so we hope to gather improved data to further refine and improve the
SIIP program to maximize student benefit.
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