
randexam: Randomized Exam Generation and Grading

Developer Manual

Version 1.14.1

2016-09-29

1 Concepts

The exam library contains NQ questions, each with up to NV variants. Each question variant contains
up to NA answers, exactly one of which must be the correct answer. The correct answer for variant V
of question Q is denoted C(Q,V). The questions within the library are grouped into zones.

We randomly generate Ne exams. Each exam contains exactly one randomly chosen variant of each
library question, with the question order randomly permuted within each zone. The order of the zones
is not permuted. Questions are numbered globally with the library and exams, not per-zone. Question
q on exam e thus corresponds to variant V (e, q) of question Q(e, q) in the library. The answer order
for each exam question is also a random permutation of the original answer order, so A(e, q, a) is the
library answer corresponding to exam answer a.

We use capital-letter variables for quantities within the library and small letters for quantities
within the randomly generated exams and students. Exams, questions, variants, and students are all
numbered with Arabic numerals starting from 1. Answers are numbered with roman letters starting
from A.

Each randomly generated exam is identified by a key K(e) of length NK, which is a sequence of
answers K1, . . . ,KNK

. The keys are encoded on the Scantron forms as the answers to the final set of
questions. For example, on a 96-question Scantron form, the 4-digit key “ECEA” is encoded as the
answers (93) E, (94) C, (95) E, and (96) A.

During the exam each student completes a single Scantron form, resulting in Ns Scantron forms for
an equal number of students. These forms are scanned and the raw data can be processed to derive
the points for each student.

In summary, the size variables used are:

NQ number of questions (in the library and on each exam)
Ne number of exams
NA maximum number of answers per question
NV maximum number of variants per question
Ns number of students (equal to the number of Scantron forms)
Ng number of ranked groups of students for statistics generation
ND number of answer-digits required to encode the exam number
NK number of answer-digits in the exam key

2 Processing pipeline

The full processing pipeline for making, using, and grading a randomized exam is shown in Figure 1.
The purple output files can be inspected and hand-edited before processing runs to control the pro-

1

cessing pipeline.

3 File formats

All library and exam question are formatted in single TeX files. All data is stored in CSV (comma-
separated values) files for easy editing by hand in a spreadsheet or text editor.

3.1 library.tex

The library_template.tex file should be copied to library.tex and edited to fill in the questions.
Non-comment text may only go into the locations indicated in the file. This file should be a valid LATEX
file that can be typeset and edited to prepare the questions. To generate the randomized exams with
the randexam script, the format of library.tex must conform to the grammar shown in Figure 2.
The basic structure of library.tex is thus a tree, as shown in Figure 3. An outline of the LATEX
in the library.tex is given in Figure 4. The randexam script processes library.tex using a state
machine. The state transition graph is shown in Figure 5.

3.2 exams.tex

This is the generated file containing all of the randomized exams. Each coverpage ends with the exam
key that needs to be filled in by the student.

3.3 specs.csv

This file encodes the arrays:

array dimensions description
K(e) Ne key for exam e
Q(e, q) Ne ×NQ library question for question q on exam e
V (e, q) Ne ×NQ library question variant for question q on exam e
A(e, q, a) Ne ×NQ ×NA library answer corresponding to answer a for question q on exam e

The first column is the exam number, the second column is the exam key, and then triples of columns
identify the library question Q, variant V , and library answer order. As an example:

e,K(e),"Q(e,q=1)","V(e,q=1)","A(e,q=1,:)","Q(e,q=2)","V(e,q=2)","A(e,q=2,:)"

1,ADC,2,2,DEBCA,3,2,DCEBA

2,BED,1,2,BDCAE,2,1,DECBA

Here the key of the first exam is K(1) = ADC and the second question on this exam is variant
V (1, 2) = 2 of library question Q(1, 2) = 3. The first answer for this question on the exam paper is
answer A(1, 2, 1) = D from the library question, while the second answer on the exam paper is answer
A(1, 2, 2) = C from the library question.

3.4 points.csv

The points file encodes the array:

array dimensions description
P (Q,V,A) NQ ×NV ×NA points awarded for giving answer A to variant V of question Q

This is stored as a four-column file with entries like:

2

library.tex

randexam proc-lib

scantron.dat

randexam proc-scan

override.csv

randexam proc-ans

students, Scantron

exams.tex solutions.csv

specs.csv

points.csv

answers.csv

scores.csv stats.tex stats_*.csv

Figure 1: The pipeline for making and grading the randomized exams. The green pentagons are input
files that require human effort to generate, the purple boxes are output files, the yellow ellipses are
program runs, and the pink hexagon is the students sitting the exam and the scanning of the Scantron
forms.

3

〈library〉 ::= 〈preamble text〉 ‘\begin{document}’ 〈body〉 ‘\end{document}’

〈body〉 ::= 〈coverpage text〉 〈zone-list〉

〈zone-list〉 ::= 〈zone〉 〈zone-list〉 | 〈zone〉

〈zone〉 ::= ‘\zone’ 〈zone text〉
| ‘\zone’ 〈zone text〉 〈question-list〉

〈question-list〉 ::= 〈question〉 〈question-list〉 | 〈question〉

〈question〉 ::= ‘\question{’ 〈points〉 ‘}’ 〈variant-list〉

〈variant-list〉 ::= 〈variant〉 〈variant-list〉 | 〈variant〉

〈variant〉 ::= ‘\variant’ 〈variant text〉 ‘\begin{answers}’ 〈answer-list〉 ‘\end{answers}’

〈answer-list〉 ::= 〈answer〉 〈answer-list〉 | 〈answer〉

〈answer〉 ::= ‘\answer’ 〈answer text〉
| ‘\correctanswer’ 〈answer text〉

Figure 2: Grammer for the library.tex input file expressed in partial Backus-Naur Form. The text
entries refer to any valid LATEX text, and points is a numeric value.

library

preamble text

coverpage text

zone 1

zone text

question 1

variant 1

variant text

answers

answer 1

answer 2

...

variant 2

...

question 2

...

zone 2

...

Figure 3: Tree structure of the library.tex input file.

4

<preamble text>

\begin{document}

<coverpage text>

\zone

<zone text>

\question{<points>}

\variant

<variant text>

\begin{answers}

\answer <answer text>

\correctanswer <answer text>

<more answers...>

\end{answers}

<more variants...>

<more questions...>

<more zones...>

\end{document}

Figure 4: Outline of the library.tex input file.

Q,V,A,"P(Q,V,A)"

...

2,1,A,0.0

2,1,B,0.0

2,1,C,0.0

2,1,D,1.0

2,1,E,0.0

Here some lines have been removed, as indicated by the ellipsis. This shows that for variant 1 of question
2, answer D is worth 1 point and all other answers are not worth any points, so P (2, 1, 4) = 1.0 and
P (2, 1, A) = 0 for A 6= 4.

3.5 override.csv

The override file encodes the array:

array dimensions description
P over
sQ Ns ×NQ override points awarded to student s for library question Q (or -1 to

not override)

This is stored as a CSV file with the first column being the student NetID and subsequent columns
specifying questions. The column header indicates the question number. It is not necessary to include
all students or all questions, and any students or questions not specified will have entries of −1 in
P over
sQ , indicating that they should not be overridden. For example:

NetID,8,13

RDEVILLE,0.4,7

MWEST,0,-1

Here two students have override scores specified for two questions. Student RDEVILLE will have a score
of 0.4 for library question Q = 8 and 7 for Q = 13. Student MWEST will have a score of zero for question
Q = 8, but for question Q = 13 his score will not be overridden, meaning it will be computed from the
answer and points data as usual.

5

start

preamble

end

 <text>

coverpage

 \begin{document}

 <text>

zone

 \zone

\end{document}

 <text>

question

\question

\end{document}

\zone

 \question

variant

\variant

 <text>

answers

 \begin{answers}

solution

 \begin{solution}answer

\answer

\correctanswer

 <text>

 \answer

 \correctanswer

presolution

 \end{answers}

\begin{solution}

 \end{solution}

 <text>

Figure 5: The state machine used by the randexam script to read the library.tex input file.

6

3.6 solutions.csv

This file gives the correct solutions for each exam in case grading by hand is necessary. This thus
encodes the array:

array dimensions description
c(e, q) Ne ×NQ the correct answer for question q on exam e

The first two columns give the exam number and key for reference, and then subsequent columns give
the correct answers. For example:

e,K(e),"C(e,q=1)","C(e,q=2)","C(e,q=3)"

1,ADC,A,A,D

2,BED,D,A,A

3,CAE,A,E,D

4,DBA,A,A,D

5,ECB,B,E,A

Here the third exam has key K(3) = CAE and the correct answer for the first question on this exam
is c(3, 1) = A, while the correct answer for the second question is c(3, 2) = E, etc.

The correct answers for each exam are derived from the correct answers in the library file, given
for each library question and each variant in the array:

array dimensions description
C(Q,V) NQ ×NV the correct answer for variant V of library question Q

The derivation of c(e, q) is then:

A(e, q, c(e, q)) = C
(
Q(e, q), V (e, q)

)
. (1)

3.7 scantron.dat

This is the raw data file from the Scantron machine. There are two possible formats for the Scantron
data, depending on whether students are allowed to bubble in more than one answer. Selecting multiple
answers is a possible approach for partial credit (where a student may get half or third credit if they
select two or three answers, for example). The difference in the data file is how the answers are
encoded. If only a single answer is allowed, then it contains lines like:

721000001001120412001Y 5380 1 N DEVILLE R993502067 RDEVILLE 434

721000002001120412001Y 5380 1 N WEST M795969582 MWEST 252

Here each answer is represented by a single digit, with 1 = A, 2 = B, etc., so student RDEVILLE

answered D for question 1, C for question 2, and D for question 3.
If, instead, multiple answers are allowed, the question information is encoded in a two-digit decimal

value that represents a little-endian “binary” encoding of the bubbled answers. That is, each answer
has a numeric value (20 = A, 21 = B, . . . , 24 = E) and the question value is the sum of all selected
answer values. The data file then contains lines like:

721000001001120412001Y 5380 1 N DEVILLE R993502067 RDEVILLE 080412

721000002001120412001Y 5380 1 N WEST M795969582 MWEST 021601

Here student RDEVILLE answered D for question 1 (08 = 23 = D), C for question 2 (04 = 22 = C),
and both C and D for question 3 (12 = 22 + 23 = C + D).

The actual file sent from the scanning office should be renamed to scantron.dat. The particular
parsing is controlled by the variable MULTIPLE_ANSWERS_PER_QUESTION; this variable only controls the
parsing of scantron.dat.

7

3.8 answers.csv

This file is essentially just a CSV version of the data in scantron.dat. It encodes the arrays:

array dimensions description
u(s, i) Ns × 4 student last name, first initial, student ID number, and NetID
b(s, q, a) Ns ×NQ ×NA bubble selection of answer a given to question q by student s;

0 = empty, 1 = filled
k(s) Ns key filled in by student s

The first column in the data file is the student number, then the next four columns store the student
information, the sixth column stores the exam key, and then columns 7 and up store the bubbled-in
answers to the questions in exam order. As an example:

s,Name,Initial,Number,NetID,k(s),"b(s,q=1,:)","b(s,q=2,:)","b(s,q=3,:)"

1,DEVILLE,R,993502067,RDEVILLE,CAE,D,C,CD

2,WEST,M,795969582,MWEST,ECB,B,E,AB

Here we see the second student has information giving the last name u(2, 1) = WEST, the first initial
u(2, 2) = M, the student number u(2, 3) = 795969582, and the NetID u(2, 4) = MWEST. The exam key
for this student is k(2) = ECB and the student bubbled answers b(2, 1, :) = [0, 1, 0, 0, 0] (selecting just
B) for question 1 on this exam paper, bubbled answers b(2, 2, :) = [0, 0, 0, 0, 1] (selecting just E) for
question 2, and bubbled answers b(2, 3, :) = [1, 1, 0, 0, 0] (selecting both A and B) for question 3.

3.9 scores.csv

This file encodes the array Pse(s) described in Section 4. For reference, the student number and
information in array u(s, i) is also included in the first columns. As an example:

s,Name,Initial,Number,NetID,P_s(s)

1,DEVILLE,R,993502067,RDEVILLE,2.0

2,WEST,M,795969582,MWEST,2.0

Here we see that both students have total points Ps(1) = Ps(2) = 2.0.

3.10 stats.tex

This file presents various summary statistics relating to the student and question performance in the
exam. It should be processed with pdflatex to produce the output stats.pdf file.

3.11 stats *.csv

Multiple files are written to encode the statistics arrays described in Section 6. These are named
after the variables they contain, so naQV is be stored in stats_n_a_QV.csv, for example. The format is
broadly similar to those files described in detail above, with column headings that specify the contents.

4 Grading

The map from student number s to exam number e is given by the array

array dimensions description
e(s) Ns exam number corresponding to student number s

8

This array is determined so that
K(e(s)) = k(s). (2)

The points awarded to each student can be determined using the grading key for any exam, not
just the particular exam that the student actually took. To make this clear, we consider the arrays:

array dimensions description
Pseq(s, e, q) Ns ×Ne ×NQ points awarded to student s on question q scored for exam e
Pse(s, e) Ns ×Ne total points awarded to student s scored for exam e
Psq(s, q) Ns ×NQ points award to student s on question q using the correct exam
Ps(s) Ns total points awarded to student s scored using the correct exam
PsQ(s,Q) Ns ×NQ points awarded to student s for library question Q

We define an array for partial credit σ(n) (the variable SCORE_PER_ANSWERS in randexam) which is the
score value multiplier when n answers are selected (e.g., σ(1) = 1 always, but σ(n) = 1/n can be used
to award partial credit, or σ(n) = 0 for n > 1 will allow no partial credit). The first array in the table
above is computed by:

Pseq(s, e, q) =

NA∑
a=1

P
(
Q(e, q), V (e, q), A(e, q, a)

)
b(s, q, a)σ

(
NA∑
a′=1

b(s, q, a′)

)
if P over

sQ

(
s,Q(e, q)

)
< 0

P over
sQ

(
s,Q(e, q)

)
otherwise

(3)
The subsequent arrays in the table above are then computed by:

Pse(s, e) =

NQ∑
q=1

Pseq(s, e, q) (4)

Psq(s, q) = Pseq

(
s, e(s), q

)
(5)

Ps(s) = Pse

(
s, e(s)

)
(6)

PsQ

(
s,Q

(
e(s), q

))
= Pseq

(
s, e(s), q

)
. (7)

We expect that e(s) maximizes Pse(s, e) for each s, as grading with the “wrong” exam key should
give random choices for each answer. Indeed, for ê 6= e(s), Pse(s, ê) should be approximately NQ/NA,
assuming that each question is worth one point if correct. Some significant deviations are likely,
however, when the number of students Ns is much larger than the number of questions NQ.

5 Curving

Curved score values are stored in the array:

array dimensions description
P curve
s (s) Ns total curved points awarded to student s

The default is for no curving, in which case P curve
s is equal to Ps. If score curving is enabled (by the

curve scores configuration parameter) then P curve
s is computed using the piecewise linear function

shown in Figure 6 with the following parameters:

quantity config option description
M0 — median of old (uncurved) scores
M1 curve new median desired median of new (curved) scores
Z1 curve new zero desired new (curved) score for old zero score

9

0 20 40 60 80 100
0

20

40

60

80

100

M0

M1

Z1

old score Ps

n
ew

sc
or

e
P

c
u
rv

e
s

Figure 6: Curving function that transforms old scores to new scores.

6 Statistics

As well as computing the scores for each student, we can assess how the students as a group performed
on the different questions and variants. Basic statistics for this assessment are listed below.

array dimensions description
nse(e) Ne number of students taking exam e
nsQV(Q,V) NQ ×NV number of students given variant V of question Q

naQVA(Q,V,A) NQ ×NV ×NA number of students giving answer A for variant V of ques-
tion Q

naQV(Q,V) NQ ×NV number of students giving an answer for variant V of ques-
tion Q

nnaQV(Q,V) NQ ×NV number of students not giving an answer for variant V of
question Q

naQ(Q) NQ number of students giving an answer for question Q

raQVA(Q,V,A) NQ ×NV ×NA fraction of students giving answer A for variant V of ques-
tion Q

rnaQV(Q,V) NQ ×NV fraction of students not giving an answer for variant V of
question Q

PQV(Q,V) NQ ×NV total points awarded for variant V of question Q
PQ(Q) NQ total points awarded for question Q
P̄QV(Q,V) NQ ×NV average points per student for variant V of question Q
P̄Q(Q) NQ average points per student for question Q
P̄ 1 average points per student for entire exam
Pmax
QV (QV) NQ ×NV maximum points available for variant V of question Q

Pmax
Q (Q) NQ maximum points available for question Q

Pmax 1 maximum points available for the entire exam

P̂Q(Q) NQ normalized average points per student for question Q

10

array dimensions description
RQV(Q,V) NQ ×NV ratio of average points for variant V to average for question

Q
nQVC(Q,V,C) NQ ×NV ×NA number of students who bubbled in C answers for variant

V of question Q

rsQQ(Q, Q̂) NQ ×NQ correlation between student scores on questions Q and Q̂

rQss(s, ŝ) Ns ×Ns correlation between question points for students s and ŝ
naiss(s, ŝ) Ns ×Ns number of mutually incorrect exam answers for students s

and ŝ
raiss(s, ŝ) Ns ×Ns proportion of identical incorrect answers for students s and

ŝ
DQ(Q) NQ “difficulty” of question Q: one minus normalized averaged

points P̂Q(Q)
rPQ(Q) NQ “discrimination” of question Q: correlation coefficient of

PsQ(s,Q) and
(
Ps(s)− PsQ(s,Q)

)
qsQ(s,Q) Ns ×NQ exam question number q in which library question Q ap-

pears for student s
VsQ(s,Q) Ns ×NQ variant number of library question Q given to student s
csQ(s,Q) Ns ×NQ correct answer position for library question Q given to stu-

dent s

These quantities are computed by:

nse(e) =

Ns∑
s=1

δ
(
K(e), k(s)

)
(8)

nsQV(Q̂, V̂) =

Ns∑
s=1

NQ∑
q=1

δ
(
Q̂,Q

(
e(s), q

))
δ
(
V̂ , V

(
e(s), q

))
(9)

naQVA(Q̂, V̂ , Â) =

Ns∑
s=1

NQ∑
q=1

NA∑
a=1

δ
(
Q̂,Q

(
e(s), q

))
δ
(
V̂ , V

(
e(s), q

))
δ
(
Â, A

(
e(s), q, a

))
· b(s, q, a)σ

(∑
a′

b(s, q, a′)
)

(10)

naQV(Q,V) =

NA∑
A=1

naQVA(Q,V,A) (11)

nnaQV(Q,V) = nsQV(Q,V)− naQV(Q,V) (12)

naQ(Q) =

NV∑
V=1

naQV(Q,V) (13)

raQVA(Q,V,A) =
naQVA(Q,V,A)

nsQV(Q,V)
(14)

rnaQV(Q,V) =
nnaQV(Q,V)

nsQV(Q,V)
(15)

PQV(Q̂, V̂) =

Ns∑
s=1

NQ∑
q=1

Psq(s, q) δ
(
Q̂,Q

(
e(s), q

))
δ
(
V̂ , V

(
e(s), q

))
(16)

PQ(Q) =

NV∑
V=1

PQV(Q,V) (17)

11

P̄QV(Q,V) =
PQV(Q,V)

nsQV(Q,V)
(18)

P̄Q(Q) =
PQ(Q)

Ns
(19)

P̄ =

NQ∑
Q=1

P̄Q(Q) =
1

Ns

Ns∑
s=1

Ps(s) (20)

Pmax
QV (Q,V) = max

A∈{1,...,NA}
P (Q,V,A) (21)

Pmax
Q (Q) = max

V ∈{1,...,NV}
Pmax
QV (Q,V) (22)

Pmax =

NQ∑
Q=1

Pmax
Q (Q) (23)

P̂Q(Q) =
P̄Q(Q)

Pmax
Q (Q)

(24)

RQV(Q,V) =
P̄QV(Q,V)

P̄Q(Q)
(25)

nQVC(Q,V,C) =

Ns∑
s=1

δ

(
C −

NA∑
a=1

b
(
s, qsQ(s,Q), a

))
δ
(
V − VsQ(s,Q)

)
(26)

rsQQ(Q, Q̂) =

∑Ns

s=1(PsQ(s,Q)− P̄Q(Q))(PsQ(s, Q̂)− P̄Q(Q̂))√∑Ns

s=1(PsQ(s,Q)− P̄Q(Q))2
√∑Ns

s=1(PsQ(s, Q̂)− P̄Q(Q̂))2
(27)

rQs (s, ŝ) =

∑NQ

Q=1(PsQ(s,Q)− P̄Q(Q))(PsQ(s, Q̂)− P̄Q(Q̂))√∑NQ

Q=1(PsQ(s,Q)− P̄Q(Q))2
√∑NQ

Q=1(PsQ(s, Q̂)− P̄Q(Q̂))2
(28)

naiss(s, ŝ) =

NQ∑
q=1

δ
(
0, Psq(s, q)

)
δ
(
0, Psq(ŝ, q)

)
(29)

raiss(s, ŝ) =
1

naiss(s, ŝ)

NQ∑
q=1

δ
(
a(s, q), a(ŝ, q)

)
δ
(
0, Psq(s, q)

)
δ
(
0, Psq(ŝ, q)

)
(30)

DQ(Q) = 1− P̂Q(Q) (31)

rPQ(Q) =

Ns∑
s=1

(
PsQ(s,Q)− P̄Q(Q)

)((
Ps(s)− PsQ(s,Q)

)
−
(
P̄ − P̄Q(Q)

))
√√√√ Ns∑

s=1

(
PsQ(s,Q)− P̄Q(Q)

)2√√√√ Ns∑
s=1

((
Ps(s)− PsQ(s,Q)

)
−
(
P̄ − P̄Q(Q)

))2 (32)

qsQ(s, Q̂) =

NQ∑
q=1

δ
(
Q̂,Q

(
e(s), q

))
q =⇒ Q

(
e(s), qsQ(s, Q̂)

)
= Q̂ (33)

VsQ(s,Q) = V
(
e(s), qsQ(s,Q)

)
(34)

csQ(s,Q) = c
(
e(s), qsQ(s,Q)

)
(35)

where δ(x, y) is the Kronecker delta function, equal to one with equal arguments and zero otherwise.
We expect that RQV(Q,V) ≈ 1, indicating that all variants were equally difficult for question Q.

We also expect that raiss(s, ŝ) ≈ 1/NA for e(s) = e(ŝ), indicating only random association between

12

incorrect answers given by students with identical exams, although this may be legitimately higher
due to correlations between student mistakes.

To understand how students of different ability levels perform it is helpful to group students by
their exam scores. We consider Ng almost-equal-sized groups of students, where all students in group
g perform worse than all students in group g + 1, etc. We can then compute the following per-group
quantities:

array dimensions description
s(r) Ns student number at rank r
g(s) Ng group number of student s
nsg(g) Ng number of students in group g
PgQV(g,Q, V) Ng ×NQ ×NV total points awarded for variant V of question Q to students

in group g
PgQ(g,Q) Ng ×NQ total points awarded for question Q to students in group g
P̄gQ(g,Q) Ng ×NQ average points awarded for question Q to students in group

g

P̂gQ(g,Q) Ng ×NQ normalized average points awarded for question Q to stu-
dents in group g

The definitions for the above quantities are:

Ps

(
s(r)

)
≤ Ps

(
s(r + 1)

)
(36)

g
(
s(r)

)
=

⌊
(r − 1)Ng

Ns

⌋
+ 1 (37)

nsg(ĝ) =

Ns∑
s=1

δ
(
ĝ, g(s)

)
(38)

PgQV(ĝ, Q̂, V̂) =

Ns∑
s=1

NQ∑
q=1

Psq(s, q) δ
(
ĝ, g(s)

)
δ
(
Q̂,Q

(
e(s), q

))
δ
(
V̂ , V

(
e(s), q

))
(39)

PgQ(g,Q) =

NV∑
V=1

PgQV(g,Q, V) (40)

P̄gQ(g,Q) =
PgQ(g,Q)

nsg(g)
(41)

P̂gQ(g,Q) =
P̄gQ(g,Q)

Pmax
Q (Q)

(42)

7 Implementation notes

The randomized exam procedure described in this document is implemented in the randexam Python
script. The configuration section at the top of the file should be edited as appropriate.

The internal variables in the script follow the notation in this document and use numpy for array
handling. The only significant departure is that all variables are numbered from zero rather than from
one, as Python uses zero-indexed arrays. The conversion between one-based and zero-based quantities
occurs during reading and writing. All internal variables and computations are zero-based.

In this document overloaded notation is used for index variables and arrays, so that we write both
Q(e, q) and C(Q,V), where Q is understood to be a dummy variable in the latter expression. In the
code, plain variable names like Q refer to the array and names like Qi and Qj are used for dummy
index variables.

All variables that represent answers are string-valued and store values A, B, etc, rather than
an integer. These correspond to indexes A ↔ 0, B ↔ 1, etc. To convert between zero-based integer

13

indexes and string representations, the functions chr2ind() and ind2chr() can be used. For example,
to access a value in the A(e, q, a) array we can write:

e = 7

q = 0

a = "D"

print(A(e, q, chr2ind(a)))

The bubbled-in answers of students are stored in a “bubble” array b, which uses 0 for unselected
answers and 1 for selections. There are a three conversion routines that deal with the bubble list
format: binary2bubble(), string2bubble(), and bubble2string(), which do exactly what they
say. The conversions to and from strings make use of the ch2ind() and ind2chr() routines. The
controlling of the parsing is through the MULTIPLE_ANSWERS_PER_QUESTION variable, and the partial
credit scoring (the σ(n) array) is stored as SCORE_PER_ANSWERS.

8 Key generation

The exam keys are generated by encoding the exam number e in base-NA using ND digits and then
appending two or three checksum digits. The exam-number digits are in little-endian order, with least
significant digit first, so for zero-based digits Ki and zero-based indexes i they are

Ki =

⌊
e

(NA)i

⌋
mod NA, for i = 0, . . . , (ND − 1). (43)

The NC checksum digits are the parity digit KP, a Fletcher-type checksum KF, and possibly a modified
Fletcher-type checksum KM, defined for zero-based digits Ki and zero-based indexes i by

KP =

ND−1∑
i=0

Ki mod NA (44)

KF =

ND−1∑
i=0

wF,iKi mod NA wF,i =
(
i mod (NA − 1)

)
+ 1 (45)

KM =

ND−1∑
i=0

wM,iKi mod NA wM,i =

(⌊
i

NA − 1

⌋
mod (NA − 1)

)
+ 1. (46)

Using the first two checksum digits ensures a minimum Hamming distance of 3 for at most (NA − 1)

non-checksum digits (up to N
(NA−1)
A different random exams). If more digits are required to encode

the exam numbers then the third checksum digit is appended to the key, ensuring a Hamming distance

of at least 3 for up to (NA−1)2 non-checksum digits, allowing up to N
(NA−1)2
A different random exams.

In the case of NA = 5 the key lengths are:

number of exams exam-number digits ND checksum digits key length NK = ND +NC

5 1 2 3
25 2 2 4
125 3 2 5
625 4 2 6
3125 5 3 8
15625 6 3 9

9 Contributors

The following people have contributed to the development of randexam:

14

Matt West: Primary developer.

Lee DeVille: Concept development, testing, individualized student feedback code.

Dallas Trinkle: Support for multiple answers, partial credit, and multicolumn answers.

Craig Zilles: Bug fixes.

15

