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ABSTRACT
This article presents a validation study of the stochastic particle-resolved aerosol model
PartMC with experimental data from an aerosol chamber experiment. For the experiment, a
scanning mobility particle sizer and a single-particle soot photometer were used to monitor
the aerosol mixing state evolution of two initially externally mixed aerosol populations of
ammonium sulfate and black carbon particles undergoing agglomeration. We applied an effi-
cient optimization algorithm (ProSRS) to determine several unconstrained simulation parame-
ters and were able to successfully reproduce number concentrations and size distributions of
mixed particles that formed by agglomeration. The PartMC modeling approach
in conjunction with the optimization procedure provides a tool for detailed comparisons of
chamber experiments and modeling, where aerosol mixing state is the focus of investigation.
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1. Introduction

Field observations show that individual atmospheric
aerosol particles can be a complex mixture of a wide
variety of species, such as soluble inorganic salts and
acids, insoluble crustal materials, trace metals, and
carbonaceous materials (Junge 1952; Moffet et al.
2016; Murphy and Thomson 1997; Prather, Hatch,
and Grassian 2008). The diversity in particle compos-
ition reflects the various formation processes of
atmospheric aerosol particles, and the transformations
that they experience during transport in the atmos-
phere, collectively called “aerosol aging processes.”
These include condensation and evaporation of semi-
volatile substances, multiphase chemical processes on
the surface or within the bulk of particles, and coagu-
lation or agglomeration of particles. Here, we refer to
coagulation if upon collision the two colliding par-
ticles lose their identity (i.e., they coalesce), whereas
we refer to agglomeration if the colliding particles
retain their identity after the collision.

In describing the complexity in composition of aero-
sols, the term “mixing state” is frequently used (Winkler
1973). We use this term here to refer to the distribution
of the chemical species among the aerosol particles

(Riemer et al. 2019; Riemer andWest 2013). This concept
is often explained by considering the two extremes. On
the one hand, an “externally mixed” aerosol has each
individual particle consisting of just one species, but with
different particles potentially containing different species.
On the other hand, an “internally mixed” aerosol has
every particle-containing equal proportions of all species,
so that all particles have the same composition. In reality,
most situations are a state somewhere between those two
extremes, neither completely externally nor completely
internally mixed (Healy et al. 2014; Ye et al. 2018). The
understanding of the aerosol mixing state and its evolu-
tion is of crucial importance to assess the aerosol’s chem-
ical reactivity (George et al. 2015), cloud condensation
nuclei (Farmer, Cappa, and Kreidenweis 2015) and ice
nuclei activity (DeMott et al. 2010), and radiative proper-
ties (Ravishankara, Rudich, and Wuebbles 2015), which
all contribute to the impact of aerosols on climate.

Tools to investigate aerosol mixing state have
been developed both on the measurement and the
modeling sides. However, to date, few studies have
quantitatively compared measured and simulated
mixing state information, which is needed for the
validation of mixing-state-aware models. One of the
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challenges to making such comparisons is to find
common metrics between the models and the meas-
urement techniques that can form the basis of such
a comparison. Some studies have compared model
results and field observations on the mixing state of
black carbon. For example, Oshima et al. (2009)
compared results from a Lagrangian parcel model
version of the MADRID-BC model to aircraft data
from the PEACE-C campaign that sampled the out-
flow from Japanese anthropogenic sources with a
single-particle soot photometer (SP2) (Moteki et al.
2007). MADRID-BC represents the aerosol popula-
tion with a two-dimensional bin structure, with one
dimension being particle size, and the second
dimension being the black carbon mass fraction.
The metric used for their comparison was the mass
fraction of thickly coated black carbon particles,
with “thickly coated” being defined as the particles
with a ratio of total diameter to black carbon core
diameter larger than two, assuming core-shell
morphology. Matsui et al. (2013) compared model
simulations from a 2D sectional aerosol model
embedded in the regional air quality model WRF-
Chem for the region of East Asia with SP2 measure-
ments obtained during the A-FORCE campaign in
2009. They used size-dependent number fractions of
black carbon-containing and black carbon-free par-
ticles and averaged coating thicknesses as metrics for
comparison. Both Oshima et al. (2009) and Matsui
et al. (2013) concluded that the simulations were
able to reproduce the general features of the obser-
vations with respect to their metrics. Their studies
also highlighted the importance of black carbon
mixing state for accurately predicting aerosol optical
properties and cloud condensation nuclei concentra-
tions. While model comparisons to field studies are
appealing because they represent the real atmos-
phere, they are challenging because the mixing states
of initial conditions and of emissions are not
well quantified.

To our knowledge, a study of mixing state evolu-
tion has not yet been performed that quantitatively
compares simulation and laboratory data. This is the
aim of the current work, which builds on our earlier
study by Tian et al. (2017), where we validated the
particle resolved aerosol model PartMC (Riemer et al.
2009) with experimental data from a chamber study.
However, for Tian et al. (2017) only agglomerating
ammonium sulfate particles were considered. Here, we
go beyond this and present the first validation of the
PartMC model where the aerosol mixing state was
evolving. The chamber experiment in this study

started with an initially externally mixed aerosol con-
sisting of ammonium sulfate and black carbon par-
ticles. During the experiment, the two subpopulations
agglomerated and became more and more intern-
ally mixed.

The contributions of this study are the quantitative
comparison of particle-resolved model output with
particle-resolved measurements, and the development
of an optimization procedure to constrain the parame-
ters that could not be directly determined experimen-
tally. We base our comparison on the total size
distributions, the size distributions of the black car-
bon-containing components, and the fraction of par-
ticles that are mixtures of ammonium sulfate and
black carbon particles. As such, this study paves the
way for more advanced aerosol chamber-model com-
parisons where detailed mixing state, particle phase,
and particle morphology evolution is the focus.

The manuscript is organized as follows. Section 2
states the governing equation for the evolution of the
aerosol in the chamber environment and describes the
PartMC simulation algorithm. Section 3 provides
details of the chamber experiment, and Section 4
describes the optimization procedure. Sections 5 and 6
present the results and summarize our findings.

2. Model description

2.1. Governing equation for the chamber
environment

We consider the evolution of an aerosol population in
the chamber that consists of two nonvolatile aerosol
species, ammonium sulfate and black carbon, which
are introduced into the chamber as external mixtures.
We exclude gas-to-particle conversion and aerosol
chemistry in our current model framework. The rele-
vant processes are therefore agglomeration, dilution,
and wall losses due to diffusion and sedimentation.
We assume that the aerosol population in the
chamber is well mixed, which justifies a box
model approach.

The model formulation is similar to our previous
study by Tian et al. (2017), but now includes two dif-
ferent chemical components, ammonium sulfate and
black carbon, rather than only one component. We
formulate the differential equation governing the time
evolution of the aerosol population in the chamber
environment in terms of the two-dimensional number
distribution nð~l, tÞ, where ~l ¼ ðl1, l2Þ represents the
particle composition vector, with the components
being the masses of ammonium sulfate (AS) and black
carbon (BC). The governing equation is
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@nð~l, tÞ
@t

¼ 1
2

ðl1
0

ðl2
0
Kð~� ,~l�~�Þnð~� , tÞnð~l�~� , tÞd�1d�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

agglomeration gain

�
ð1
0

ð1
0
Kð~l,~�Þnð~l, tÞnð~� , tÞd�1d�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

agglomeration loss

þðnfillð~l, tÞ�nð~l, tÞÞkdilðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dilution

�ðnð~l, tÞaD~l ðtÞ þ aS~lðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wall loss

Þ:

(1)

In Equation (1), nð~l, tÞ (m�3 kg�2) is the aerosol
number distribution at time t, Kð~l,~�Þ (m3 s�1) is the
agglomeration coefficient for particles with constituent
masses ~l and ~� , nfillð~l, tÞ (m�3 kg�2) is the aerosol
number distribution of the particles at time t that are
introduced into the chamber, kdilðtÞ (s�1) is the dilu-
tion rate, and aDðtÞ (s�1) and aSðtÞ (s�1) are the wall
loss rate coefficients of diffusion and sedimentation,
respectively.

The wall loss treatment (coefficients aD~l and aS~l) is
based on Naumann (2003) and was also used in our
previous study by Tian et al. (2017). It provides a for-
malism of size-dependent wall losses due to particle
diffusion and sedimentation. These rates are given by

aD~l ¼ Ddiff ,~lAD

dD,~lVB
, (2)

aS~l ¼ pqD3
m,~l g Ddiff ,~lAS

6kTVB
: (3)

In Equations (2) and (3), Ddiff ,~l ¼ DdiffðDme,~lÞ
(m2 s�1) is the diffusion coefficient for particle ~l,
Dme,~l (m) is the mobility-equivalent diameter of par-
ticle ~l, AD (m2) is the diffusional deposition area,
dD,~l (m) is the diffusional boundary layer thickness for
particle ~l, and VB (m3) is the volume of the chamber.
The thickness dD,~l has the following formulation based
on Fuchs (1964) and Okuyama et al. (1986),

dD,~l ¼ kD
Ddiff ,~l

Du

� �a

, (4)

where kD (m) is a chamber-specific parameter that
can vary between different experimental setups. The
constant a is a coefficient that was theoretically deter-
mined by Fuchs (1964) to be 0.25, and Du ¼
1 m2 s�1 is the unit diffusion coefficient, which is
formally needed to obtain dimensional consistency. In
Equation (3), Dm,~l (m) is the mass-equivalent diam-
eter of particle ~l,AS (m2) is the sedimentation area of
the chamber, q is the particle material density
(kg m�3), g is the gravitational acceleration (m s�2), k

is the Boltzmann constant (J K�1), and T is the tem-
perature (K).

From Tian et al. (2017), we also learned that
assuming spherical particle morphology introduces
biases in the prediction of the size distributions of
agglomerating solid particles. A treatment for fractal
particles (Tian et al. 2017) is therefore also used in
this article and is summarized in the online supple-
mentary information (SI).

2.2. The PartMC simulation algorithm

PartMC is a stochastic, particle-resolved aerosol box
model that solves the governing equation (Equation
(1)). The model resolves the composition of many
individual aerosol particles within a well-mixed vol-
ume of air. Riemer et al. (2009), DeVille, Riemer, and
West (2011), Curtis et al. (2016), and DeVille, Riemer,
and West (2019) describe in detail the numerical
methods used in PartMC. To summarize, the particle-
resolved approach uses a large number of discrete
computational particles (104 to 106) to represent the
particle population of interest. Each particle is repre-
sented by a “composition vector”, which stores the
mass of each constituent species within each particle
and evolves over the course of a simulation according
to various chemical or physical processes. For our
study, the relevant processes are Brownian coagulation
(agglomeration), dilution and wall losses due to diffu-
sion and sedimentation. They are simulated with a
stochastic Monte Carlo approach by generating a real-
ization of a Poisson process. The “weighted flow algo-
rithm” (DeVille, Riemer, and West 2011, 2019)
improves the model efficiency and reduces ensemble
variance. The code is open-source under the GNU
General Public License (GPL) version 2 and can be
downloaded at http://lagrange.mechse.illinois.edu/
partmc/. We used version 2.4.0 for this work.

We initialized the simulations shown in this article
with 104 computational particles. This number
changes over the course of the simulation due to par-
ticle emissions and particle loss processes, but is kept
within the range of 5� 103 and 2� 104 by “doubling/
halving”, which is a common Monte-Carlo particle
modeling approach to maintain accuracy (Liffman
1992). If the number of computational particles drops
below half of the initial number, the number of com-
putational particles is doubled by duplicating each
particle; if the number of computational particles
exceeds twice the initial number, then the particle
population is down-sampled by a factor of two. These
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operations correspond to a doubling or halving of the
computational volume.

3. Experimental setup

3.1. Setup of chamber measurements

The experiments modeled in this study were a subset
of experiments conducted during the third Boston
College-Aerodyne Research, Inc. 2012 Black Carbon
BC3 study. A detailed account of these experiments
was published by Sedlacek et al. (2015). The current
work focuses on several experiments that investigated
the agglomeration of separate polydisperse distribu-
tions of solid black carbon and ammonium sulfate
particles. The evolution of these distributions over
time, starting from the initial mixing to several
hours, were monitored with a condensation particle
counter (CPC; TSI model 3775), a scanning mobility
particle sizer (SMPS; TSI model 3936), and a
single-particle soot photometer (SP2; Droplet
Measurement Technology).

The two aerosol distributions were generated using
separate atomizers (TSI model 3076), mixed together,
diluted with clean air, and dried with an annular dif-
fusion drier packed with molecular sieves (Fisher, 4–8
Mesh) to maintain relative humidity conditions below
40%. The absorbing black carbon (BC) particles were
generated from an aqueous suspension of Regal black
(Cabot, R400) particles. The non-absorbing ammo-
nium sulfate (AS) particles were generated from an
aqueous solution. These aerosols were initially charac-
terized separately to obtain desired number concentra-
tions and mean particle sizes. The ammonium sulfate
number distributions were lognormal and had a geo-
metric mean mobility-equivalent diameter of 100 nm
and a geometric standard deviation of 1.8, whereas
the black carbon number distributions were lognormal
with a geometric mean diameter of 200 nm and a geo-
metric standard deviation of 1.6. The agglomeration
experiments were conducted in a stainless steel barrel
(Skolnik model ST5503). Prior to each experiment,
the barrel was purged with particle-free clean air until
the background counts were below our detec-
tion limits.

The agglomeration experiments were conducted in
two stages. The first stage consisted of generating the
black carbon and ammonium sulfate particles, mixing
the two flows, and streaming the combined aerosol
into the barrel for approximately 1 h, filling the barrel
to a steady-state concentration. At this point, the bar-
rel was closed to allow the distributions to evolve and
agglomerate, initiating the second stage of the

experiment. During the second stage, samples were
periodically withdrawn from the barrel for measure-
ments, pulling clean air into the barrel through a
HEPA filter. When not sampling from the barrel, the
instruments were pulling ambient air through a
HEPA filter. The samples drawn from the barrel were
diluted prior to measurement to minimize coincidence
in the SP2 instrument.

3.2. Processing of experimental data

The data reduction and analysis is based on the meth-
odology developed by Sedlacek et al. (2015). As the
single-particle soot photometer (SP2) principle of
operation has been described in detail elsewhere (e.g.,
Moteki et al. 2007; Schwarz et al. 2006), we will only
highlight the main points here. The SP2 measures the
time-dependent scattering and incandescence signals
generated by individual BC-containing particles as
they travel through a continuous-wave laser beam
operating at 1064 nm. As the particle traverses the
laser beam, it will scatter light that is recorded by a
dedicated detector. Should the particle contain BC,
some of the laser energy will be absorbed until the
temperature of the BC component is raised to the
point of incandescence. The scattering signal provides
information on overall particle size and total number
concentration of particles (BC-containing and non-
BC-containing) whereas the incandescence signal is
sensitive to only BC-containing particles. The individ-
ual particle incandescence signals are converted to
particle mass (obtained via calibration) that can then
be converted to an equivalent diameter to yield a BC-
specific number or mass distribution. The SP2 com-
munity refers to the incandescence BC component as
refractory black carbon (rBC). For this article, we will
use the term BC for simplicity.

To probe the BC-containing particle morphology,
the SP2 takes advantage of the following fact: BC
incandescence can only occur for those BC-containing
particles for which the associated non-BC material is
non-refractory and has been removed. The removal of
this non-refractory material occurs when the light-
absorbing component of the BC-containing particle
(i.e., the BC core) heats up to the point where the
non-refractory material is lost via evaporation. This
loss of non-refractory material continues until it has
been completely removed, leaving a denuded BC par-
ticle. Absent any other mechanism to dissipate the
spectrally absorbed energy, the now denuded BC par-
ticle continues to heat until it reaches its characteristic
incandescence temperature (�3700–4300K; Schwarz
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et al. 2006). Given this BC-containing particle lifecycle
in the SP2 laser beam, the temporal scattering and
incandescence signals observed for individual particles
can be used to probe the morphology of
these particles.

The temporal behavior of the per-particle scattering
peak relative to incandescence peak is known as the
lag-time in the SP2 (Moteki et al. 2007). For example,
in the bounding limits of a BC particle thickly coated
with non-refractory material, the scattering signal
maximum can occur earlier than the incandescence
maximum (i.e., large positive lag-time) if the non-
refractory material fully evaporates prior to incandes-
cence, or later than the incandescence maximum (i.e.,
large negative lag-time) if some fraction of the non-
refractory material is expelled in particulate form
from the particle prior to evaporation (Sedlacek et al.
2015). A pure BC particle will exhibit a scattering sig-
nal maximum that very closely coincides with the
incandescence signal maximum since there is no non-
refractory material to burn off.

In this work, we are concerned with mixed AS-BC
particles that arise from the agglomeration process.
Using the methodology discussed in Sedlacek et al.
(2015), the BC-containing particles in our chamber
experiment were partitioned into two types: mixed
(meaning they contain both AS and BC components)
and non-mixed (meaning they contain mainly BC,
with the AS component below the detection limit).
Apportionment was based on measured lag-times. To
account for positive and negative lag-times that can
be observed with agglomerated particles, particles with
lag-times between �0:4 ls and þ0:4 ls were

classified as being non-mixed while those with lag-
times outside this window were labeled as mixed.
While it is possible that some mixed particles could
generate a lag-time signal that could fall within the
non-mixed lag-time window (�0:4 ls to 0:4 ls), the
number of such particles is expected to be small.

4. Determining simulation parameters from
experimental data

4.1. Initial condition and emission profiles

The initial condition for the simulation was nð~l, 0Þ ¼
0: Since the experiment was performed in two stages,
the filling period during the first 68min and the sam-
pling period from 68min onwards, we specified the
quantities in the dilution term in Equation (1) as fol-
lows:

kdilðtÞ ¼
RAS þ RBC

VB
, t � 68 min,

Rdil2

VB
, t> 68 min,

8><
>: (5)

nfillð~l, tÞ ¼
RAS nASð~lÞ þ RBC nBCð~lÞ

RAS þ RBC
, t � 68 min,

0, t> 68 min:

8<
:

(6)

The parameters RAS and RBC refer to the filling
inflow rates of ammonium sulfate particles and black
carbon particles, respectively, during the initial filling
period, while Rdil2 is the outflow rate during the sam-
pling period. The size distributions of the two particle
types are specified by

nASð~lÞ ¼ sc, AS n̂ASð~lÞ, (7)

nBCð~lÞ ¼ sc, BC n̂BCð~lÞ, (8)

where n̂ASð~lÞ and n̂BCð~lÞ are measured diluted inflow
distributions of ammonium sulfate and black carbon,
respectively, and sc, AS and sc, BC are scaling factors to
compensate for the dilution. The scaling factors will
be determined as part of the optimization procedure
in Section 4.2. The inflow distributions nASð~lÞ and
nBCð~lÞ are shown in Figure 1, using the optimized
values of the scaling parameters. Other input parame-
ters are specified in Table 1.

Figure 1. Size distributions of AS (ammonium sulfate) and BC
(black carbon) particles that were introduced into the aero-
sol chamber.

Table 1. Input parameters for chamber experiments.
Parameter Meaning Value

VB Chamber volume 0:23 m3

RH Relative humidity 10%
T Temperature 293 K
p Pressure 105 Pa

AEROSOL SCIENCE AND TECHNOLOGY 1233



4.2. Optimization procedure

We identified 12 parameters that need to be prescribed
for the PartMC simulations but that are not well con-
strained from the chamber experiments (see Table 2).
We determined these parameters by jointly optimizing
them over a predefined domain so that the error between
the simulation outputs and the experimental measure-
ments was minimized. We denote the unknown parame-
ters in Table 2 as a 12-dimensional vector~x:

Specifically, for each choice of the 12 parameters in
~x, the PartMC model was simulated with a total
simulation time of 220min, and the outputs were gen-
erated every 2min of simulation. These outputs were
then compared to two sets of experimental data: (1)
measurement of the total size distribution with an
SMPS, and (2) measurement of the black carbon com-
ponent size distribution with an SP2. The error with
respect to the SMPS measurements is given by

�SMPS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T1

XT1

t¼1

ð�t, 1Þ2
vuut , (9)

where T1 is the number of SMPS measurement times,
and �t, 1 is the relative error of size distributions at
time t, defined as

�t, 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN1

i¼1
ðni, tPMC � ni, tSMPSÞ2PN1

i¼1
ðni, tSMPSÞ2

vuuut : (10)

Here ni, tPMC and ni, tSMPS represent the number con-
centration at size bin i and time t for the PartMC
simulations and for the SMPS measurements, respect-
ively, and N1 is the number of bins.

Similarly, the error between the PartMC simula-
tions and the SP2 measurements is given by

�SP2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T2

XT2

t¼1

ð�t, 2Þ2
vuut , where �t, 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN2

i¼1
ðni, tPMC � ni, tSP2Þ2PN2

i¼1
ðni, tSP2Þ2

vuuut :

(11)

The measured size distributions from the SMPS and
SP2 instruments are given by

ni, tSMPS ¼ sc, SMPS n̂i, t
SMPS, (12)

ni, tSP2 ¼ sc, SP2 n̂i, t
SP2, (13)

where n̂i, t
SMPS and n̂i, t

SP2 are the measurements after
dilution, and sc, SMPS and sc, SP2 are the dilution scaling
factors, so that ni, tSMPS and ni, tSP2 correspond to the
number concentrations in the barrel. The scaling fac-
tors are two of the parameters in Table 2 that are
determined by the optimization procedure.

The total error � is the root mean square error
(RMSE) over the two types of measurements:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2SMPS þ �2SP2

2

r
: (14)

Because the simulated number concentrations
ni, tPMC, ni, tSMPS, and ni, tSP2 all depend on the value of the
parameter vector ~x, the total error � (Equation (14))
is also dependent on the vector ~x: Hence, finding the
unknown parameters can be formally cast into solving
a noisy optimization problem. That is, optimization of
the mean of a stochastic (noisy) function:

argmin
~x2D

Eð~xÞ ¼ Ex �ð~x,xÞ½ �: (15)

The optimization objective function is the expected
error function Eð~xÞ, which is the average of the total
error � defined in Equation (14). Here the average is
taken over repeated runs of the PartMC model with a
given parameter vector ~x: Formally, x captures the
randomness in the PartMC simulations, and D is the
optimization domain given by the parameter ranges in
Table 2. Here the optimization objective E is not
observed directly but can be estimated via independ-
ent random samples of the function � (each sample is
a simulation of PartMC). Moreover, the function � is
computationally expensive to evaluate since one evalu-
ation requires running a PartMC simulation with

Table 2. Parameters that were included in the optimization procedure.
Parameter Meaning Range Unit

a Exponent in diffusional boundary layer thickness [0.2, 0.3] 1
kD Prefactor in diffusional boundary layer thickness [0.02, 0.1] m
D0 Diameter of primary particles [6, 200] nm
f Volume filling factor [1.35, 2] 1
df Fractal dimension [1.5, 3] 1
RAS Filling inflow rate of ammonium sulfate particles [1, 4] L/min
RBC Filling inflow rate for black carbon particles [1, 4] L/min
Rdil2 Dilution outflow rate during Period 2 [0.5, 4] L/min
sc, AS Input scaling factor for ammonium sulfate particles [100, 400] 1
sc, BC Input scaling factor for black carbon particles [100, 400] 1
sc, SMPS Output scaling factor for SMPS measurements [100, 400] 1
sc, SP2 Output scaling factor for SP2 measurements [50, 300] 1
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some parameter vector ~x and then computing the
error according to Equations (9)–(14).

The problem described by Equation (15) is a stand-
ard simulation optimization problem (Amaran et al.
2016), which we solved using an efficient parallel surro-
gate optimization algorithm, known as ProSRS1 (Shou
and West 2019). ProSRS is an iterative algorithm where
in each iteration, a radial basis function (RBF) model
that approximates the objective function is first con-
structed using available evaluations, and then a new set
of point(s) is proposed based on the RBF model.
Compared to other optimization methods (Anderson
and Ferris 2001; Contal et al. 2013; Elster and Neumaier
1995; Gonz�alez et al. 2016; Shah and Ghahramani 2015;
Snoek, Larochelle, and Adams 2012), ProSRS has three
appealing characteristics. First, it allows parallel evalua-
tions of the expensive function � (Equation (14)) during
optimization. Second, it is a global optimization algo-
rithm with asymptotic guarantees that is known to
work well for complex, multimodal functions. Third,
the algorithm is efficient to run, so that the computa-
tional overhead of executing it is typically negligible
relative to the expensive function evaluations.

For the SMPS measurements, the number of times T1

(Equation (9)) is 66 and the number of size bins N1

(Equation (10)) is 106. For the SP2 measurements, the
number of times T2 and the number of bins N2 are 54
and 200, respectively (see Equation (11)). As a result, the
optimization problem consists of fitting a total
of T1N1 þ T2N2 ¼ 66� 106þ 54� 200 ¼ 17,796 data
points with the 12 parameters listed in Table 2. The
parameters affect the time evolution of the modeled dis-
tributions in diverse, nonlinear, size-dependent ways, so
it is plausible that the relatively small number of parame-
ters has little risk of overfitting. This nonlinear depend-
ence of the time-evolving aerosol state on the parameters
is due both to direct nonlinearities with respect to many
of the parameters (e.g., the wall loss exponent a) and to
the fact that agglomeration rates scale nonlinearly with
concentration and are size-dependent. This means that
even parameters such as inflow rates, which linearly
affect the number of particles added to the chamber,
actually produce size-dependent and nonlinear changes
in the size distributions. To better understand these
effects, we computed sensitivities of the fit with respect
to the parameters, as described below.

We ran the ProSRS algorithm with 800 iterations
on 32-core XE nodes of Blue Waters2 with the algo-
rithm configured to use all the cores of a node (i.e.,

ProSRS proposed 32 different values of ~x for parallel
evaluations at each iteration). The per-iteration time-
cost of running ProSRS was approximately 3 s, which
was about 1–2 orders of magnitude lower than that of
evaluating the error function e (one evaluation took
about 100 s).

Running ProSRS yielded a total of 800� 32 ¼
25,600 evaluations of the error function � (Equation
(14)). The next step was to select, from all the eval-
uated vectors ~x, the one with the lowest expected
error E (Equation (15)). Since the expected error E is
unknown and we have only one noisy evaluation of it
(i.e., one evaluation of function �) per vector ~x, select-
ing the true best vector is not trivial. For this, we
used a simple selection procedure based on Monte
Carlo estimates.

This selection procedure consists of three steps.
First, from the 25,600 evaluations, we chose the 100
vectors with the lowest � values. Second, for each can-
didate vector ~x, we performed ten independent evalu-
ations of function � and used the average of these ten
evaluations as the mean estimate of the expected error
Eð~xÞ: Finally, the candidate with the lowest mean esti-
mate was reported as the optimum, and its value is
shown in the second column of Table 3. The mean
estimate of the error for this optimum is 0.1559.
Figure 2 illustrates the entire optimization workflow
from defining a problem, running ProSRS, to finally
selecting the best vector.

When formulating the dilution term in Equation (1),
it can be shown that the four parameters RAS,RBC,
sc, AS, sc, BC only appear in three distinct combinations,
so there is one unconstrained degree of freedom.
Specifically, for t � 68 min, substituting Equations
(5)–(8) into the dilution term of Equation (1) gives

ðnfillð~l, tÞ�nð~l, tÞÞkdilðtÞ
¼ 1

VB
ðRAS sc, AS|fflfflfflfflffl{zfflfflfflfflffl}

C1

n̂ASð~l, tÞ þ RBC sc, BC|fflfflfflfflffl{zfflfflfflfflffl}
C2

n̂BCð~l, tÞ

Table 3. Optimization results.

Parameter Unit Optimal value
Confidence
interval (CI) Rel. CI mag. (%)

a 1 0.230 [0.203, 0.254] 22.2
kD m 0.086 [0.051, 0.097] 52.8
D0 nm 74 [66, 84] 26.0
df 1 2.15 ½2:02, 2:37� 16.3
f 1 1.41 [1.35, 1.76] 28.8
RAS L/min 1.70 [1.51, 1.93] 25.0
RBC L/min 1.70 [1.51, 1.93] 25.0
Rdil2 L/min 1.08 [0.944, 1.14] 18.1
sc, AS 1 271 [231, 297] 22.8
sc, BC 1 284 [255, 312] 20.2
sc, SMPS 1 253 [216, 287] 27.8
sc, SP2 1 217 [192, 236] 20.3

1ProSRS code is publicly available at https://github.com/compdyn/ProSRS.
2Blue Waters: https://bluewaters.ncsa.illinois.edu.
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�ðRAS þ RBCÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
C3

nð~l, tÞÞ: (16)

Here we see that we really only have three free
parameters (C1, C2, C3) rather than four (RAS,RBC,
sc, AS, sc, BC). Intuitively, this redundancy arises because
we have over-parameterized the model by including
separate parameters for the inflow rates (RAS,RBC)
and the input scaling factors (sc, AS, sc, BC). In reality,
we only have three independent quantities that are
physically meaningful (two inflow concentrations and
one net outflow rate). We could have chosen to write
the original model equations with only three parame-
ters (the C1, C2, C3 parameters above) but we feel that
this would make the model less clear.

To remove the redundancy in our choice of param-
eters, we can add an extra restriction on the four par-
ameter values. We arbitrarily chose RAS ¼ RBC (equal
inflow rates) as this extra restriction, because it is sim-
ple and numerically well-conditioned. Note that this
modeling choice does not alter the optimization pro-
cedure or model simulations in any way, because any
difference in the actual experimental inflow rates will
be compensated for in the model by changes to the
input scaling factors. We performed the optimization
in the full 12-dimensional parameter space but then
mapped the parameters to preserve C1, C2, C3 and to
satisfy the arbitrary additional restriction RAS ¼ RBC:

This additional restriction removed the extra uncon-
strained degree of freedom. Concretely, given parame-
ters ðR0

AS,R
0
BC, s

0
c, AS, s

0
c, BCÞ, we mapped them to

RAS ¼ RBC ¼ 1
2
ðR0

AS þ R0
BCÞ, (17)

sc, AS ¼ 2R0
AS

R0
AS þ R0

BC
s0c, AS, (18)

sc, BC ¼ 2R0
BC

R0
AS þ R0

BC
s0c, BC, (19)

which preserves C1, C2, C3 and has equal inflow rates.
We conducted a sensitivity analysis for the opti-

mum parameter vector, and the results are summar-
ized in terms of the confidence interval (CI) shown in
the last two columns of Table 3. These CIs can be
viewed as a quantitative measure of how sensitive the
objective function E (Equation (15)) is to perturba-
tions in the parameter vector ~x around the optimum.
To compute the CIs, we first estimated the standard
deviation of the noise in the error function � using
the aforementioned independent evaluations of the
100 candidate vectors. The standard deviation was
estimated to be about 0.005. We then found all the
vectors, among the candidate vectors, for which the
mean estimate of the error was within one standard
deviation above the best value (i.e., within the interval
½0:1559, 0:1559þ 0:005�). If we denote the collection
of these within-one-standard-deviation vectors as the
set A, then the CI lower limit ~l is defined as ~li ¼
min~x2A~xi (i ¼ 1, 2, :::, 12), where subscript i denotes
the ith dimension of a vector. Similarly, the CI upper
limit ~u is given by ~ui ¼ max~x2A~xi: The relative CI
magnitude ~m is computed relative to the optimum
~xopt (the second column of Table 3) as ~mi ¼
ð~ui�~liÞ=ð~xoptÞi: From the above definitions, we can
see that a smaller relative CI magnitude in a dimen-
sion implies the objective function is more sensitive to
the change of values in that dimension around
the optimum.

5. Results and discussion

In this section, we will first discuss the values of the
optimal parameters as listed in Table 3 that carry
physical meaning (a, kD, df , D0, f), and then present
the results of the evolution of measured and simulated
aerosol populations in the barrel. From the results for
the optimal parameters (Table 3), we learn the

Figure 2. Optimization workflow for determining the vector~x of unknown parameters listed in Table 2 for the PartMC simulation.
We first defined a minimization problem (Equation (15)), then ran an iterative surrogate-based optimization algorithm (ProSRS),
and finally selected the best vector from the ProSRS candidate vectors. RBF stands for radial basis function.
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following. Our value for the wall loss parameter,
a¼ 0.230, CI ½0:203, 0:254�, is consistent with the the-
oretical value of 0.25 that was derived by Fuchs
(1964). The coefficient kD is proportional to the lam-
inar boundary layer thickness used in the wall loss
parameterization and can vary between different
experimental setups (Bunz and Dlugi 1991). Our esti-
mate for kD, kD ¼ 0:086 m, CI ½0:051, 0:097�, is similar
to our previous results described in Tian et al. (2017),
where we determined a value of 0.06m, and also simi-
lar to the results by van de Vate and ten Brink (1980)
who determined a value of 0.048m as their best fit.

The parameter D0 represents the diameter of the
primary particles that comprise the fractal aggregates
formed by agglomeration. As shown in Figure 1, the
primary particles (ammonium sulfate and black car-
bon) are polydisperse and they have already under-
gone some unknown amount of agglomeration during
the process of formation and injection into the cham-
ber. The use of one constant D0 parameter for both
species is a simplification. Our optimal value for this
parameter, D0 ¼ 74 nm, CI ½66, 84� nm, is therefore to
be interpreted as an “effective diameter” and repre-
sents an aspect of the model that should be improved
in the future.

Our optimal fractal dimension, df ¼ 2:15, CI
½2:02, 2:37�, is clearly below the value of 3 for spher-
ical particles, indicating that the aggregates that are
formed by agglomeration cannot be assumed to be
spherical. However, it is larger than the value of 1.78
predicted by diffusion-limited cluster-cluster aggrega-
tion (DLCA) theory (Sorensen 2011). This can be
explained by the fact that the aggregates only contain
a small number of primary particles, and therefore
our fitted value does not represent the “true fractal
dimension” but needs to be adjusted for the small-N
case (Tian et al. 2017).

As described in Sorensen (2011), in this case, the
scaling of the mobility-equivalent diameter Dme can
be written as

Dme ¼ bDgeo / bN1=d̂ f / N�0:13N1=d̂ f , (20)

where d̂ f is the true fractal dimension, Dgeo is the geo-
metric diameter, and N is the number of primary par-
ticles. As detailed in SI Equation (S-3), we are using
the Naumann (2003) relationship

Dme ¼ hKRDgeo ¼ hKRD0ðfNÞ1=df / N1=df : (21)

Importantly, the Kirkwood-Riseman ratio hKR does
not depend on N, and so we see that in the small-N
case the parameter df in the Naumann (2003) model
that we use is in fact the mass-mobility scaling

exponent Dms described by Sorensen (2011), which is
defined by the relationship Dme / N1=Dms : Note that
Dms is denoted Dm in Sorensen (2011). From our
optimization procedure, we obtain the value df ¼ 2:1,
hence

Dme / N1=df ¼ N0:43 (22)

/ N�0:13N1=d̂ f , (23)

and matching these two expressions allows us to com-
pute that the true fractal dimension implied by our
model is d̂ f ¼ 1:68: This is close to the theoretically
expected value of 1:7860:1 for DLCA processes
(Sorensen 2011). Similar to the parameter D0, we con-
sider the fractal dimension derived here as an
“effective” parameter applied to all particles over the
entire duration of the experiment, and future model
improvement should include a refinement of
this assumption.

The volume filling factor f accounts for the fact
that the spherical primary particles can occupy only
as much as 74% of the available volume, in which
case f would be 1.35. Larger values of f correspond to
less dense packing. Our optimal value of 1.41 corre-
sponds to the primary particles occupying about 70%
of the volume, a value that is plausible, but that we
cannot confirm with independent measurements.

Figures 3 and 4 both show the experimental data
that were used to perform the optimization as
described in Section 4.2 as red lines, and the corre-
sponding model output as blue lines. Figure 3 shows
the total size distributions at 10, 50, 108, and 192min,
while Figure 4 shows the distributions of the black
carbon aerosol component at the same times. The
simulated results were obtained using the optimal par-
ameter values as listed in Table 3. In these and later
figures, the simulation results are the means of ten
PartMC simulations and the lighter-colored bands
around the simulation curves represent the standard
deviations of the mean estimates. In later figures, the
standard deviation is visually negligible and is
not plotted.

For all times, the simulated size distributions follow
the measured distributions well, which is expected for
a successful optimization exercise. We observe a
growth of the particles due to agglomeration as the
mode of the distribution moves from 100 nm to
400 nm (Figure 3). The distribution of black carbon
component sizes evolves much less (Figure 4), with
the mode increasing from about 150 nm to 200 nm.
This is expected because the relatively low abundance
of black carbon (Figure 1) means that agglomeration
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Figure 4. Simulated (blue line) and measured (red line) size distributions of black carbon particle components at 10, 50, 108, and
192min. These size distributions were used in the optimization procedure described in Section 4.2.

Figure 3. Simulated (blue line) and measured (red line) total size distributions at 10, 50, 108, and 192min. These size distributions
were used in the optimization procedure described in Section 4.2. The green line shows the simulated size distribution of mixed
particles, defined here as the particles containing between 10 and 90% ammonium sulfate.
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events between pairs of particles that both contain
black carbon are relatively less frequent.

Figure 3 also shows the simulated size distributions
of “mixed particles” as green lines with the light green
band representing the standard deviation of the mean
estimate based on ten PartMC simulations. We cate-
gorized as mixed particles those with ammonium sul-
fate mass fractions between 10% and 90%. As
expected, over the course of the simulation, the abun-
dance of mixed particles increases.

Figures 5a and b show the time series of simulated
and measured total number concentrations, and of the
number concentrations of black carbon particles,
respectively. The gaps in the measured time series
during the sampling period are due to the fact that
sampling occurred through a filter. We can clearly
distinguish the filling period, when the number

concentration increases, from the sampling period,
when the number concentration decreases due to
agglomeration, dilution, and wall losses. The measured
and modeled values match well over the entire record
for the total number concentration, while the simula-
tion somewhat underpredicted the number concentra-
tion of the black carbon-containing particles during
the sampling phase.

Figure 6 shows the time series of the agglomerated
fraction /mix, which we defined as

/mix ¼
Nmix

NBC þ Nmix
, (24)

where Nmix is the number concentration of mixed
particles, and NBC is the number concentration of
pure black carbon particles. As before, for the simu-
lated results, we consider a particle as “mixed” when
the mass fraction of the second species is at least 10%.
For this figure, we only included particles between
200 nm and 450 nm to match the size range that the
SP2 captures. The simulated time series of /mix fol-
lows the observed time series well. This comparison
provides an independent validation of our modeling
approach since the observational data were not used
in the optimization procedure.

Figure 7 displays the simulated two-dimensional
size distribution nðwBC,DmÞ, which is defined as
the derivative nðwBC,DmÞ ¼ @2NðwBC,DmÞ=ð@wBC

@ log 10DmÞ of the two-dimensional cumulative num-
ber distribution NðwBC,DmÞ in terms of black carbon
mass fraction wBC and particle mass-equivalent diam-
eter Dm: Since we only consider two species, this

Figure 5. Time series of (a) total particle number concentra-
tion and (b) number concentration of black carbon-containing
particles in the barrel over the course of the experiment. The
simulated results of the optimized PartMC model are shown in
blue, and the experimental results are shown in red. The verti-
cal broken lines indicate the times shown in Figures 3, 4, and
7, while the vertical solid lines indicate the ends of the filling
and sampling periods.

Figure 6. Simulated (blue line) and measured (red line) frac-
tion of black carbon-containing particles that have undergone
agglomeration. These values were not directly used in the
optimization procedure, and so the agreement between simu-
lated and measured values is a validation of the model.
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figure represents the full mixing state of the popula-
tion. At t¼ 10min, early during the filling period,
mixed particles had already formed throughout the
entire range of mass fractions, resulting in a rather
complicated aerosol mixing state that cannot be easily
estimated. This figure confirms that it was necessary
to perform the simulation from the beginning of the
filling period (rather than starting after the filling), as
this was the only time when the initial conditions
were known.

The evolution of the mixing state can be more pre-
cisely quantified by the mixing state index v (Riemer
and West 2013), which ranges in general from 0 for
completely external mixtures to 100% for completely
internal mixtures. It is given by the affine ratio of the
diversity metrics Da and Dc :

v ¼ Da�1
Dc � 1

: (25)

The diversity metrics, in turn, are defined as fol-
lows. First, the per-particle mixing entropies Hi need
to be calculated based on the per-particle species mass
fractions. These values are then averaged over the
entire population to give Ha, and finally the average
particle species diversity Da: For our system of two
species (AS and BC), these can be written as

Hi ¼ �wi
BC lnw

i
BC�ð1� wi

BCÞ ln ð1� wi
BCÞ, (26)

Ha ¼ 1P
i mi

X
i

miHi, (27)

Da ¼ exp ðHaÞ, (28)

where wi
BC is the mass fraction of BC in particle i,

and mi is the mass of particle i. Second, the bulk
population diversity is given by

Hc ¼ �wbulk
BC lnwbulk

BC �ð1� wbulk
BC Þ ln ð1� wbulk

BC Þ, (29)

Dc ¼ exp ðHcÞ, (30)

where wbulk
BC is the bulk mass fraction of BC. Since Ha

is obtained by a mass-weighted average of the per-
particle mixing entropies Hi (Equation (27)), the mix-
ing state index v reflects the mixing state of the par-
ticles that constitute most of the aerosol mass of the
population. For example, a large value of v indicates
that most of the mass resides in mixed particles. In
our experiment, the mixing state index increased
monotonically from 0 at the start to 65% at the end
of the simulation, as shown in Figure 8, representing
a partially internally mixed population, consistent
with Figure 7.

Figure 7. Two-dimensional simulated size distributions nðwBC,DmÞ at 10, 50, 108, and 192min.
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6. Conclusions

For the first time, the particle-resolved model PartMC
was validated with experimental data where the aerosol
mixing state evolved as two initially externally mixed
particle populations underwent agglomeration in an
aerosol chamber. The evolution of the particle popula-
tion was monitored with an SMPS and an SP2 instru-
ment over the course of several hours. The model
simulations included agglomeration, dilution and wall
losses, and accounted for the non-spherical shape of the
aggregates. We applied an efficient optimization algo-
rithm (ProSRS) to determine several unconstrained
parameters using the total size distributions and the size
distributions of the black carbon particle components.
Both PartMC and ProSRS are publicly available at
https://github.com/compdyn/PartMC and https://
github.com/compdyn/ProSRS, respectively.

Using the set of optimized parameters, the model
was able to fit well the time evolution of total number
concentrations. The number of concentration of black
carbon-containing particles was somewhat underpre-
dicted. The simulated number fraction of mixed par-
ticles, which was not explicitly fit, matched the
observations well. The mixing state of the population,
quantified by the mixing state index v, evolved quickly
as soon as the particles entered the chamber, moving
from a completely external mixture to a partially
internal mixture.

This work provides the foundation for more
sophisticated studies that might include additional
aerosol processes, such as gas-particle partitioning or
particle restructuring, or studies that quantify mixing
state impacts on population-integrated quantities,
such as total absorption. Adding condensable vapors
to the experimental setup increases the challenge of

representing the dynamic evolution of the population
for several reasons, including accounting for wall
losses of vapors and the multi-generation of reaction
products (Sunol, Charan, and Seinfeld 2018), and
competition effects between particles of different sizes
or compositions. Particle-resolved modeling is particu-
larly appropriate for these kinds of complex scenarios
as it can accurately account for these inter-particle
competitive effects. The ProSRS algorithm used in this
work can be applied to estimate unconstrained param-
eters related to these processes, e.g., parameters related
to wall losses, production rates of secondary species,
or morphology parameters. For these purposes, it
would be useful to obtain additional observational
constraints, for example scanning electron microscopy
images to quantify the evolution of particle compos-
ition and morphology. An area of future model
improvement is the representation of particle morph-
ology including the treatment of fractal particles, espe-
cially when condensable vapors are involved
(Heinson, Liu, and Chakrabarty 2017).
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